Физика с пользой для человека

Изображение взято из открытых источников

В этом цикле статей я постараюсь рассказать в простой и доступной форме о такой науке, как физика. Эти уроки будут полезны как студентам, так и школьникам, а так же любым другим людям, которые внезапно захотели освежить свои знания.

Для начала, давайте разберемся, а что же такое “физика”? Вот что пишет Википедия (цитата):

«Фи́зика (от др.-греч. φύσις — природа) — область естествознания. Наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении. Законы физики лежат в основе всего естествознания».

Если сказать простыми словами, физика – это наука о природе. Здесь под природой имеется в виду не только леса, поля и луга, но планета в целом, а так же космос и вообще вся материальная Вселенная, включая микромир (атомы и элементарные частиц) и макромир (звезды и галактики). Для чего это нужно знать? Полагаю, ответ очевиден. Знание об окружающем мире позволяют наиболее эффективно с этим самым миром взаимодействовать себе на благо. Например, когда наши древние предки узнали о том, что металл при высокой температуре (в огне) плавиться, они смогли усовершенствовать свои орудия труда, сделав их не каменными а металлическими. Это позволило затрачивать на их изготовление меньше усилий и времени: вылить или выковать предмет из металла гораздо проще, чем сделать его из камня путем ударов камнями друг о друга. А в наше время благодаря физике стало возможно изобрести автомобили, телефоны, компьютеры и даже запускать корабли в космос.

Теперь поговорим о разделах физики. Их довольно много, разберём самые основные:

  • Механика. Это, по сути начальный раздел физики. Основа основ, так сказать. Давайте сначала разберем точное определение, а потом переведем его на понятный язык. И так меха́ника (греч. μηχανική — искусство построения машин) — раздел физики, наука, изучающая движение материальных тел и взаимодействие между ними; при этом движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве (цитата из википедии). Ну а если по русский, то механика – это наука о разных механизмах, о том, как они друг на друга влияют, о движении и силах, которые могут действовать на разные предметы и что из этого получается. Благодаря механике были изобретены механические часы, колесо, мельница и многое другое. А вот автомобиль был изобретен не только благодаря механике, а еще и другим разделам физики, например, термодинамике. Сама механика делиться на три раздела. Кинематика – наука о движении, динамика – наука движении под действием разных сил, статика – наука о силах без движения.
  • Термодинамика. Наука о тепловой энергии, ее превращении и взаимодействии с другими видами энергии. Благодаря знаниям из этой области физики, были изобретены такие устройства, как двигатель внутреннего сгорания в автомобиле, паровой двигатель в старых поездах, батареи центрального отопления и многое другое.
  • Молекулярная физика. В некотором роде это продолжение термодинамики, но с учетом того знания, что все вещества состоят из молекул. Развитие этой науки привело к появлению таких дисциплин, как физика твердого тела, физическая химия, молекулярная биология, физика металлов, физика полимеров, кристаллофизика, физика плазмы и многое другое.
  • Электричество и магнетизм. Благодаря этой науке мы имеем многочисленные устройства, работающие на электрической энергии – холодильники, телевизоры, компьютеры. Компьютеры, кстати, были изобретены не только благодаря знаниям в области электричества, но так же благодаря таким наукам, как молекулярная физика, атомная физика и квантовая механика.
  • Атомная физика. Раздел физика, занимающийся строением атома. Благодаря этим знаниям были изобретены различные полупроводниковые приборы, в частности транзисторы, которые легли в основу всех полупроводниковых устройств, в том числе современных компьютеров.
  • Ядерная физика. Этот раздел изучает строение и свойства атомных ядер, он логический вытекает из атомной физики. К сожалению, этот раздел физики принес человечеству очень много вреда (изобретение атомной бомбы), возможно, даже больше, чем пользы. И все из-за того, что есть такие нехорошие люди, всякие там генералы и прочие военные, которые все открытия стремятся использовать в первую очередь для убийств. Но нельзя сказать, что ядерная физика не принесла никакой пользы. Во первых, ядерную энергию научились использовать и в мирных целях, а во вторых, как развитие ядерной физики, появились такие физические дисциплины, как физика элементарных частиц и квантовая механика.
  • Физика элементарных частиц. Как оказалось, не только атом делиться на ядро и электроны, но и само ядро состоит из протонов, нейтронов а так же других частиц. И все эти частицы (электроны, протоны, нейтроны) могу друг с другом взаимодействовать, порождая другие частицы. Да и некоторые частицы тоже оказались делимыми, и при том, они обладают различными свойствами. Все это изучает физика элементарных частиц.
  • Квантовая механика. Оказалось, что элементарные частицы совсем не такие, как предметы окружающего мира. Это не кусочки чего-то твердого, как например, камень, а какая-то неведомая штуковина, описанная математическими формулами, которая может находиться в разных местах одновременно и обладает другими экзотическими свойствами. По сути, квантовая механика занимается тем, что изучает эти самые элементарные частицы и описывает их поведение математическими формулами. Какая от всего этого польза? На первый взгляд, польза не совсем очевидна, по крайней мере, для сегодняшнего дня. Если конечно, не считать того, что для создания таких сложных полупроводниковых устройств, как компьютер, уже необходимо учитывать квантовомеханические эффекты. Хотя уже сейчас созданы простейшие компьютеры, вычисления которых основаны исключительно на квантовых эффектах, так называемые квантовые компьютеры. Пройдет какое-то время, и квантовые компьютеры станут такой же обыденной вещью, как ноутбук или сотовый телефон. Только вот по мощности квантовые компьютеры во много превзойдут обычные. А уж что будет дальше, остается только гадать. Может, знания в области квантовой механики позволят людям построить звездолет и полететь на Альфа Центавру, а так же колонизировать другие планеты.
  • Теория относительности. Это раздел физики, изучающий пространство, время, гравитацию и их взаимосвязь. Время в этой теории рассматривается не как простой хронометраж событий, как понимает его большинство людей, а как некую неведомую штуковину, описанную формулами, которая неразрывно связанная с пространством. А само пространство – это такая же неведомая штукенция, тоже описанная формулами. Дело в том, что внезапно оказалось, что законы механики иногда не работают. Иными словами, при помощи формул было вычислено, например, как должна двигаться какая-нибудь планета, наблюдаемая астрономами, ну, скажем Марс. А она, сволочь такая, двигается не совсем так. Погрешность не большая, но достаточная, что бы поставить под сомнение законы классической механики. Это привело к созданию теории относительности, согласно которой чем быстрее движется тело, тем больше его движение отклоняется от законов механики. Это самое отклонение так же можно вычислить по формуле. Для земных скоростей оно даже не заметно. Но совсем другое дело для звездолета, летящего на Альфа Центавру со скоростью, близкой к скорости света (скорость света примерно 300 км/с). В этом случае наблюдаться различные релятивистические эффекты. В частности, замедление времени. Может случиться так, что пока космонавты куда то летали на звездолете, на Земле прошли века, все их родственники давно умерли от старости, а для экипажа прошло всего то, допустим, пару месяцев и они вернулись такие же молодые, как и полетели. Может возникнуть вопрос, а откуда все это узнали, если таких звездолетов еще не изобрели? А все дело в том, что все эти формулы проверили при помощи очень точных приборов, которые позволяют замерить те самые мизерные отклонения, характерные для относительно медленных скоростей.
  • Теория струн. А вот это еще более сложный раздел физики, чем квантовая механика и теория относительности. Она объединяет и ту и другую дисциплину. Дело в том, что внезапно оказалось, что теория относительности и квантовая механика противоречат друг другу. Что бы убрать эти противоречия, были выдвинуты новые гипотезы, которые легли в основу теории струн.

Следующий урок. Физика для чайников. Урок 2. Механика.

Источник

Физика — школьный предмет, при изучении которого многие сталкиваются с проблемами. Из курса физических знаний многие почерпнули лишь цитату Архимеда: «Дайте мне точку опоры, и я переверну мир!». На самом деле физика окружает нас на каждом шагу, а физические лайфхаки делают жизнь проще и удобнее. Знакомьтесь, очередная десятка лайфхаков, которая расширит ваш горизонт знаний об окружающем мире.

1. Лужа, исчезни!

Если вы пролили воду, не торопитесь вытирать лужу. Просто разотрите ее по полу, увеличив площадь поверхности жидкости. Чем больше поверхность жидкости, тем быстрее она испарится. Понятное дело, «сладкие» лужи высыхать не оставляют: вода испарится, а сахар останется.

2. Теневой загар

Прямые солнечные лучи и чувствительная кожа – тандем сомнительный. Чтобы «озолотить» тело и не получить ожог, загорайте в тени. Ультрафиолетовое излучение рассеяно везде и «достанет» вас даже под пальмами. Не отказывайтесь от свиданий с солнцем, но оградите себя от его обжигающих поцелуев.

3. Автополив растений

Отправляетесь в отпуск? Позаботьтесь о горшочных растениях. Организуйте автополив: поставьте рядом с горшком банку с водой, опустите в нее до дна хлопчатобумажный шнур, другой конец которого положите в горшок. Работает капиллярный эффект. Вода заполняет пустоты тканевых волокон и перемещается по ткани. Система работает сама – по мере подсыхания земли движение воды по ткани увеличивается и, наоборот, при достаточной увлажненности – прекращается.

4. Быстро охладить напитки

Чтобы быстро охладить бутылку с напитком, оберните ее влажным бумажным полотенцем и поставьте в морозильную камеру. Известно, вода с влажной поверхности испаряется, а температура оставшейся жидкости понижается. Эффект охлаждения от испарения усилит эффект охлаждения морозильной камеры, и влажная бутылка охладится гораздо быстрее.

5. Правильно охладить продукты

Другой физический лайфхак на тему правильного охлаждения посвящен продуктам. Холодный воздух всегда опускается вниз, теплый – поднимается вверх. И именно поэтому хладагенты в сумку-морозильник следует класть сверху! В противном случае холодный воздух так и остается снизу, а верхние продукты окажутся испорченными.

6. Солнечный светильник из бутылки

Чердачные помещения тоже нуждаются в освещении. Если возможности провести ламповый свет нет, пользуйтесь солнечной энергией. Проделайте на крыше чердака дырку и закрепите в ней пластиковую бутылку с водой. Солнечный свет, отражаясь и рассеиваясь, равномерно осветит помещение. Увы, такой «светильник» работает только днем.

7. Молоко не убежит

Как вскипятить молоко, чтобы оно не убежало, а плиту не пришлось нудно драить? Положите на дно кастрюли блюдце в перевернутом виде, залейте молоко. Блюдце сдержит образование пены и бурное кипение, вынуждая молоко кипеть как вода.

8. Быстро сварить картофель

Если положить в воду при варке картофеля сливочное масло, теплоемкость воды повысится, а картофель сварится в 2 раза быстрее! К тому же, сливочное масло самым положительным образом скажется на вкусе картофеля.

9. «Лекарство» от запотевшего зеркала

Запотевшее в ванной зеркало нарушает гармоничный ритм сборов. Как избавиться от конденсата? При приеме душа воздух нагревается, а поверхность зеркала остается холодной. Для решения проблемы достаточно сгладить разницу температур – например, прогреть зеркало феном.

10. Ненагревающаяся ручка

Некоторые материалы нагреваются быстро – железо, медь, серебро и другие металлы. Другие принимают и передают тепло медленно – пробка, древесина или керамика. Так сделайте апгрейд своих нагревающихся ручек, продев в ушки древесные пробки от винных бутылок.

Мы публикуем интересные новости и любопытные факты наших читателей! Отправить здесь …

Источник

Появилась в продаже книга Луиса Блумфилда «Как все работает. Законы физики в нашей жизни», подготовленная к печати издательством Corpus при двойной поддержке Политехнического музея и «Книжных проектов Дмитрия Зимина». Расскажем о том, почему её стоит прочитать — особенно если физика представляется вам чем-то скучным и непонятным.

Поднимаясь утром с пружинного матраса, включая электрический чайник, согревая руки о чашку кофе и проделывая ещё десятки повседневных вещей, мы редко задумываемся о том, как именно всё это происходит. Возможно, в чьей-то памяти одиноким осколком торчит закон Ома или правило буравчика (хорошо, если вы вообще помните, что «буравчик» — это винт, а не фамилия).

Далеко не всегда ясно, в какие моменты жизни мы встречаемся с силой тока и моментом импульса.

Само собой, существуют учёные, технические специалисты и гики. Мы даже готовы поверить, что бывают люди, которые просто очень хорошо учили физику в школе (наше им уважение). Для них не составит труда рассказать, как именно работает лампа накаливания или солнечная батарея и объяснить, глядя на крутящееся велосипедное колесо, где там трение покоя, а где — трение скольжения. Однако, будем честными, большинство людей имеет обо всём этом весьма смутные представления.

Из-за этого кажется, будто природные объекты и механизмы ведут себя тем или иным образом благодаря каким-то волшебным силам. Бытовое представление о причинах и следствиях может оградить от некоторых ошибок (например, не класть обёрнутые фольгой продукты в микроволновку), однако более глубокое понимание физико-химических процессов позволяет лучше разбираться, что к чему, и аргументировать свои решения.

Луис Блумфилд — профессор Виргинского университета, исследователь атомной физики, физики конденсированного состояния и оптики. 

Ещё в юности он выбрал опыты главным методом исследования мира, черпая из обыденных вещей вдохновение для занятий наукой. Стремясь сделать знания доступными для многих людей, а не горстки специалистов, Блумфилд занимается преподаванием, выступает на телевидении и пишет научно-популярные работы.

Главная задача книги «Как все работает. Законы физики в нашей жизни» — опровергнуть представление о физике как скучной и оторванной от жизни науке, и дать понять, что она описывает реальные явления, которые можно увидеть, пощупать и ощутить.

Для меня всегда было загадкой, почему физика традиционно преподается как абстрактная наука — ведь она изучает вещественный мир и законы, которыми тот управляется. Я убеждён в обратном: если лишить физику бесчисленных примеров из живого, реального мира, она не будет иметь ни основы, ни формы — словно молочный коктейль без стакана.

— Луис Блумфильд

Речь идёт о движении тел, механических устройствах, тепле и многом другом. Вместо того, чтобы начинать с теории, автор идёт от окружающих нас вещей, формулируя с их помощью законы и принципы. Отправными точками служат карусели, американские горки, водопровод, тёплая одежда, аудиоплееры, лазеры и светодиоды, телескопы и микроскопы… 

Вот некоторые примеры из книги, на которых автор объясняет механику простых вещей.

Почему конькобежцы быстро двигаются

Коньки — удобный способ рассказать о принципах движения. Ещё Галилео Галилей сформулировал, что тела имеют свойство двигаться равномерно и прямолинейно в отсутствие внешних сил, будь то сопротивление воздуха или трение поверхности. Коньки способны почти полностью устранить трение, так что вы легко скользите по льду. Объект в состоянии покоя стремится остаться на месте, а объект движущийся — двигаться дальше. Именно это называется инерцией. 

Как режут ножницы

Сдвигая кольца ножниц, вы производите моменты сил, под действием которых лезвия смыкаются и режут бумагу. Бумага стремится раздвинуть лезвия за счет моментов сил, «разводящих» лезвия. Если вы приложите достаточно большое усилие, «сдвигающие» моменты сил возобладают над «разводящими». В результате лезвия ножниц приобретут угловое ускорение, начнут поворачиваться, сомкнутся и разрежут лист бумаги.

Что творится в шампурах

Если нагреть один конец металлического стержня, атомы в этой части стержня будут колебаться более интенсивно, чем в холодном конце, и металл начнет проводить тепло из горячего конца к холодному. Некоторая часть этого тепла передается благодаря взаимодействию соседних атомов, однако основная его часть будет передана подвижными электронами, которые переносят тепловую энергию на большие расстояния от одного атома к другому.

Как забиваются гвозди

Весь направленный вниз импульс, который вы сообщаете молотку, замахнувшись, передаётся гвоздю за время краткого удара. Поскольку время передачи импульса мало, со стороны молотка должна быть приложена очень большая сила, чтобы его импульс перешёл к гвоздю. Эта ударная сила вбивает гвоздь в доску.

Зачем воздушные шары нагревают

Чтобы заполнить воздушный шар горячим воздухом, нужно меньше частиц, чем для заполнения холодным воздухом. Дело в том, что в среднем частица горячего воздуха движется быстрее, сталкивается чаще и занимает больше места, чем частица холодного воздуха. Поэтому шар, наполненный горячим воздухом, весит меньше, чем такой же шар, наполненный холодным. Если вес шара достаточно мал, равнодействующая сила направлена вверх, и шар поднимается.

Почему воланчик летит всегда одинаково

Бадминтонный волан всегда летит головкой вперед, так как результирующая сила, вызванная давлением, приложена в его центре давления, на некотором расстоянии от центра масс. Если вдруг оперение случайно окажется впереди головки, сопротивление воздуха создаст момент силы относительно центра масс и вернет всё на свои места.

Что делает воду жёсткой

Жёсткой считается вода, в которой содержание положительно заряженных ионов кальция и магния превышает 120 мг на литр. Ионы этих и некоторых других металлов связывают отрицательные ионы мыла и создают нерастворимую пену, оседающую грязным налетом на раковине, лейке душа, ванне, в стиральной машине и на одежде. Затеяв стирку мылом в жёсткой воде, будьте готовы к неприятным сюрпризам.

Пройти курс у автора

У Луиса Блумфилда можно поучиться онлайн на курсе «Как работают вещи»: здесь он запускает машинки, отправляется на детскую площадку, чтобы поговорить о качелях, ставит опыты и рассказывает обо всём на свете.

Если даже этого вам окажется мало, и профессора захочется увидеть воочию, такая возможность тоже есть: Луис Блумфилд будет в Москве с 3 по 8 декабря.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Источник