Виды излучения и их польза

Виды излучения и их польза thumbnail

Выделяют три типа излучения: электромагнитное, корпускулярное, волновое движение среды. Электромагнитное излучение – это электромагнитные волны, испускаемые заряженными частицами, атомами, молекулами, антеннами и другими излучающими системами. В зависимости от длины волны (частоты колебания) и источников излучения различают рентгеновское излучение, гамма-излучение, оптическое излучение: инфракрасное излучение, свет, ультрафиолетовое излучение, радиоизлучение. Диапазон электромагнитных волн находится в пределах от 10-13м до 10-1м и более. Источниками гамма-излучения являются возбужденные атомные ядра. Рентгеновские лучи возникают в результате торможения ускоренных электронов, а также при переходах внешних электронов на свободные уровни во внутренних оболочках тяжелых атомов. Излучения в оптическом диапазоне волн происходят в результате процессов электронного возбуждения, колебательных и вращательных движений молекул. Излучения радиоволн возникают при движении переменных электрических токов по проводникам излучающих систем (антенн).

Корпускулярное излучение представляет собой поток атомных частиц: электронов, позитронов, протонов, нейтронов, альфа-частиц, сопровождающих естественный и искусственный распад ядер. Волновое излучение происходит в результате механического движения какого-либо объекта, вызывающего последовательное сжатие или разрежение среды (ультразвук, инфразвук).

Солнечное излучение является мощным оздоровительным и профилактическим фактором. Вся совокупность биохимических, физиологических реакций, протекающих при участии энергии света, носит название фотобиологических процессов. Фотобиологические процессы в зависимости от их функциональной роли разделяют на три группы. Первая группа обеспечивает синтез биологически важных соединений. Ко второй группе относятся фотобиологические процессы, служащие для получения информации и позволяющие ориентироваться в окружающей обстановке (зрении). Третья группа – процессы, сопровождающиеся вредными для организма последствиями (разрушение белков, витаминов, ферментов, появление вредных мутаций).

Наиболее активной в биологическом отношении является ультрафиолетовая часть солнечного спектра. УФ-лучи, попадая на кожу вызывают местные изменения клеточных и тканевых белков, а также воздействуют на рецепторы кожи, рефлекторным путем влияют на весь организм. Являясь неспецифическим стимулятором физиологических функций, эти лучи оказывают благоприятное влияние на белковый, жировой, углеводный, минеральный обмены, иммунную систему организма, что проявляется в общеоздоровительном, тонизирующем и профилактическом действии солнечного излучения на организм. Кроме общебиологического влияния на все системы и органы, УФ-излучение оказывает специфическое действие, свойственное определенному диапазону волн. Так, УФ-излучение с диапазоном волн от 400 до 320 нм вызывает эритемно-загарное действие; с диапазоном волн от 320 до 275 нм – антирахитический и слабобактерицидный эффекты; коротковолновое УФ-излучение с длиной волн от 275 до 180 нм оказывает повреждающее действие на биологическую ткань. Чрезмерное солнечное облучение приводит к развитию выраженной эритемы с отеком кожи и ухудшением состояния здоровья. Повышается частота возникновения рака кожи у лиц, постоянно подвергающихся избыточному солнечному облучению.

ИК-излучение оказывает на организм тепловое воздействие, которое определяется степенью поглощения лучей в толще кожи (ожог). Видимый свет оказывает специфическое воздействие на зрительный анализатор, а также на функциональное состояние центральной нервной системы, а через нее на все органы и системы организма.

Виды излучения и влияние их на организм человека

Организм реагирует не только на степень освещенности, но и на цветовую гамму солнечного света. Возможность оценки длины световой волны, проявляющаяся в способности к цветоощущению, играет существенную роль в жизни человека, оказывая влияние на эмоциональную сферу и деятельность различных систем организма. Красный цвет вызывает ощущение тепла, действует возбуждающе на психику, усиливает эмоции, но быстро утомляет, приводит к напряжению мышц, повышению артериального давления, учащению дыхания. Оранжевый цвет вызывает чувство веселья и благополучия, способствует пищеварению. Желтый цвет создает хорошее, приподнятое настроение, стимулирует зрение и нервную систему. Зеленый цвет действует успокаивающе, полезен при бессоннице, переутомлении, понижает артериальное давление, общий тонус организма. Голубой цвет вызывает ощущение прохлады и действует на нервную систему успокаивающе, причем сильнее зеленого, больше, чем зеленый цвет, понижает артериальное давление и тонус мышц. Фиолетовый цвет расслабляет психику.

Источник

Человек постоянно находится под воздействием разнообразных внешних факторов. Одни из них являются видимыми, например, погодные условия, и степень их воздействия можно контролировать. Другие же не видны человеческому глазу и носят название излучений. Каждый должен знать виды излучения, их роль и области применения.

Радиоволны

Некоторые виды излучения человек может встретить повсеместно. Ярким примером являются радиоволны. Они представляют собой колебания электромагнитной природы, которые способны распределяться в пространстве со скоростью света. Такие волны несут в себе энергию от генераторов.

Источники радиоволн можно разделить на две группы.

  1. Природные, к ним относятся молнии и астрономические единицы.
  2. Искусственные, то есть созданные человеком. Они включают в себя излучатели с переменным током. Это могут быть приборы радиосвязи, вещания, компьютеры и системы навигации.

Кожа человека способна осаждать на своей поверхности этот вид волн, поэтому есть ряд негативных последствий их воздействия на человека. Радиоволновое излучение способно замедлить деятельность мозговых структур, а также вызвать мутации на генном уровне.

Для лиц, у которых установлен кардиостимулятор, такое воздействие смертельно опасно. У этих приборов имеется четкий максимально допустимый уровень излучения, подъем выше него вносит дисбаланс в работу системы стимулятора и ведет к его поломке.

Все влияния радиоволн на организм были изучены только на животных, прямого доказательства их негативного действия на человека нет, но способы защиты ученые все же ищут. Как таковых эффективных способов пока нет. Единственное, что можно посоветовать, так это держаться подальше от опасных приборов. Поскольку бытовые приборы, включенные в сеть, тоже создают вокруг себя радиоволновое поле, то просто необходимо отключать питание устройств, которыми человек не пользуется в данный момент.

Излучение инфракрасного спектра

Все виды излучения тем или иным образом связаны между собой. Некоторые из них видны человеческому глазу. Инфракрасное излучение примыкает к той части спектра, которую глаз человека может уловить. Оно не только освещает поверхность, но и способно ее нагревать.

Читайте также:  Трава рыжей польза и вред

Основным естественным источником ИК-лучей является солнце. Человеком созданы искусственные излучатели, посредство которых достигается необходимый тепловой эффект.

Теперь нужно разобраться, насколько полезным или вредным является такой вид излучения для человека. Практически все длинноволновое излучение инфракрасного спектра поглощается верхними слоями кожи, поэтому не только безопасно, но и способно повысить иммунитет и усилить восстановительные процессы в тканях.

Что касается коротких волн, то они могут уходить глубоко в ткани и вызывать перегрев органов. Так называемый тепловой удар является следствием воздействия коротких инфракрасных волн. Симптомы этой патологии известны почти всем:

  • появление кружения в голове;
  • чувство тошноты;
  • возрастание пульса;
  • нарушения зрения, характеризующиеся потемнением в глазах.

Как же уберечь себя от опасного влияния? Нужно соблюдать технику безопасности, пользуясь теплозащитной одеждой и экранами. Применение коротковолновых обогревателей должно быть четко дозировано, нагревательный элемент должен быть прикрыт теплоизолирующим материалом, при помощи которого достигается излучение мягких длинных волн.

Рентгеновское излучение

Если задуматься, все виды излучения способны проникать в ткани. Но именно рентгеновское излучение дало возможность использовать это свойство на практике в медицине.

Если сравнить лучи рентгеновского происхождения с лучами света, то первые имеют очень большую длину, что позволяет им проникать даже через непрозрачные материалы. Такие лучи не способны отражаться и преломляться. Данный вид спектра имеет мягкую и жесткую составляющую. Мягкая состоит из длинных волн, способных полностью поглощаться тканями человека. Таким образом, постоянное воздействие длинных волн приводит к повреждению клеток и мутации ДНК.

Есть ряд структур, которые не способны пропустить через себя рентгеновские лучи. К ним относится, например, костная ткань и металлы. Исходя из этого и производятся снимки костей человека с целью диагностики их целостности.

В настоящее время созданы приборы, позволяющие не только делать фиксированный снимок, например, конечности, но и наблюдать за происходящими с ней изменениями «онлайн». Эти устройства помогаю врачу выполнить оперативное вмешательство на костях под контролем зрения, не производя широких травматичных разрезов. При помощи таких приборов можно исследовать биомеханику суставов.

Что касается негативного воздействия рентгеновских лучей, то длительный контакт с ними может привести к развитию лучевой болезни, которая проявляется рядом признаков:

  • нарушения неврологического характера;
  • дерматиты;
  • снижение иммунитета;
  • угнетение нормального кроветворения;
  • развитие онкологической патологии;
  • бесплодие.

Чтобы защитить себя от страшных последствий, при контакте с этим видом излучения нужно использовать экранирующие щиты и накладки из материалов, не пропускающих лучи.

Оптическое излучение

Данный вид лучей люди привыкли называть попросту – свет. Этот вид излучения способен поглощаться объектом воздействия, частично проходя через него и частично отражаясь. Такие свойства широко применяются в науке и технике, особенно при изготовлении оптических приборов.

Все источники оптического излучения делятся на несколько групп.

  1. Тепловые, имеющие сплошной спектр. Тепло в них выделяется за счет тока или процесса горения. Это могут быть электрические и галогенные лампы накаливания, а также пиротехнические изделия и электродосветные приборы.
  2. Люминесцентные, содержащие газы, возбуждаемые потоками фотонов. Такими источниками являются энергосберегающие приборы и катодолюминесцентные устройства. Что касается радио- и хемилюминесцентных источников, то в них потоки возбуждаются за счет продуктов радиоактивного распада и химических реакций соответственно.
  3. Плазменные, чьи характеристики зависят от температуры и давления плазмы, образующейся в них. Это могут быть газоразрядные, ртутные трубчатые и ксеноновые лампы. Не исключением являются и спектральные источники, а также приборы импульсного характера.

Оптическое излучение на организм человека действует в комплексе с ультрафиолетовым, что провоцирует выработку меланина в коже. Таким образом, положительный эффект длится до тех пор, пока не будет достигнуто пороговое значение воздействия, за пределами которого находится риск ожогов и кожной онкопатологии.

Ультрафиолетовое излучение

Самым известным и широко применяемым излучением, воздействие которого можно встретить повсеместно, является ультрафиолетовое излучение. Данное излучение имеет два спектра, один из которых доходит до земли и участвует во всех процессах на земле. Второй задерживается слоем озона и не проходит через него. Слой озона обезвреживает этот спектр, тем самым выполняя защитную роль. Разрушение озонового слоя опасно проникновением вредных лучей на поверхность земли.

Естественный источник этого вида излучения – Солнце. Искусственных источников придумано огромное количество:

  • Эритемные лампы, активизирующие выработку витамина Д в слоях кожи и помогающие лечению рахита.
  • Солярии, не только позволяющие позагорать, но и имеющие лечебный эффект для людей с патологиями, вызванными недостатком солнечного света.
  • Лазерные излучатели, используемые в биотехнологиях, медицине и электронике.

Что касается воздействия на организм человека, то оно двоякое. С одной стороны, недостаток ультрафиолета может вызвать различные болезни. Дозированная нагрузка таким излучением помогает иммунитету, работе мышц и легких, а также предотвращает гипоксию.

Все виды влияний делятся на четыре группы:

  • способность убивать бактерий;
  • снятие воспаления;
  • восстановление поврежденных тканей;
  • уменьшение боли.

К отрицательным воздействиям ультрафиолета можно отнести способность провоцировать рак кожи при длительном воздействии. Меланома кожи крайне злокачественный вид опухоли. Такой диагноз почти на 100 процентов означает грядущую смерть.

Что касается органа зрения, то чрезмерное воздействие лучей ультрафиолетового спектра повреждает сетчатку, роговицу и оболочки глаза. Таким образом, использовать этот вид излучения нужно в меру. Если при определенных обстоятельствах приходится длительно контактировать с источником ультрафиолетовых лучей, то необходимо защитить глаза очками, а кожу специальными кремами или одеждой.

Гамма-излучение

Это так называемые космические лучи, несущие в себе ядра атомов радиоактивных веществ и элементов. Поток гамма-излучения имеет очень большую энергию и способен быстро проникать в клетки организма, ионизируя их содержимое. Разрушенные клеточные элементы действуют как яды, разлагаясь и отравляя весь организм. В процесс обязательно вовлекается ядро клеток, что ведет к мутациям в геноме. Здоровые клетки разрушаются, а на их месте образуются мутантные, не способные в полной мере обеспечить организм всем необходимым.

Данное излучение опасно тем, что человек его никак не ощущает. Последствия воздействия проявляются не сразу, а имеют отдаленное действие. В первую очередь страдают клетки кроветворной системы, волос, половых органов и лимфоидной системы.

Радиация очень опасна развитием лучевой болезни, но даже такому спектру нашли полезное применение:

  • с его помощью стерилизуют продукты, оборудование и инструменты медицинского предназначения;
  • измерение глубины подземных скважин;
  • измерение длины пути космических аппаратов;
  • воздействие на растения с целью выявления продуктивных сортов;
  • в медицине такое излучение применяется для проведения лучевой терапии в лечении онкологии.
Читайте также:  Сибирское здоровье новомин польза и вред

В заключение нужно сказать, что все виды лучей с успехом применяются человеком и являются необходимыми. Благодаря им существуют растения, животные и люди. Защита от чрезмерного воздействия должна быть приоритетным правилом при работе.

Источник

Виды радиоактивных излучений

Навигация по статье:

  • Альфа излучение
  • Нейтронное излучение
  • Бета излучение
  • Гамма излучение
  • Рентгеновское излучение
  • Сравнительная таблица видов радиации
  • Видео о радиации и ее видах

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют – ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация – это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация – это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Виды радиации

Виды радиации

Альфа, бета и нейтронное излучение – это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение – это излучение энергии.


Альфа излучение

альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение – это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение – это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

Читайте также:  Учить стихи польза для памяти

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Гамма (γ) излучение – это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения – это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение – это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!


Сравнительная таблица с характеристиками различных видов радиации

характеристикаВид радиации
Альфа излучениеНейтронное излучениеБета излучениеГамма излучениеРентгеновское излучение
излучаютсядва протона и два нейтронанейтроныэлектроны или позитроныэнергия в виде фотоновэнергия в виде фотонов
проникающая способностьнизкаявысокаясредняявысокаявысокая
облучение от источникадо 10 смкилометрыдо 20 мсотни метровсотни метров
скорость излучения20 000 км/с40 000 км/с300 000 км/с300 000 км/с300 000 км/с
ионизация, пар на 1 см пробега30 000от 3000 до 5000от 40 до 150от 3 до 5от 3 до 5
биологическое действие радиациивысокоевысокоесреднеенизкоенизкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергийВесовой множитель
Фотоны всех энергий (гамма излучение)1
Электроны и мюоны всех энергий (бета излучение)1
Нейтроны с энергией < 10 КэВ (нейтронное излучение)5
Нейтроны от 10 до 100 КэВ (нейтронное излучение)10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение)20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение)10
Нейтроны > 20 МэВ (нейтронное излучение)5
Протоны с энергий > 2 МэВ (кроме протонов отдачи)5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение)20

Чем выше “коэффициент k” тем опаснее действие определенного вида радиции для тканей живого организма.

Видео: Виды радиации



Источник