Строение атома и его польза

Строение атома и его польза thumbnail

Атом – наименьшая частица вещества. Его изучение началось еще в Древней Греции, когда к строению атома было приковано внимание не только ученых, но и философов. Каково же электронное строение атома, и какие основные сведения известны об этой частице?

Строение атома и его польза

Строение атома

Уже древнегреческие ученые догадывались о существовании мельчайших химически частиц, из которых состоит любой предмет и организм. И если в XVII-XVIII вв. химики были уверены, что атом неделимая элементарная частица, то на рубеже XIX-XX вв., опытным путем удалось доказать, что атом не является неделимым.

Атом, будучи микроскопической частицей вещества, состоит из ядра и электронов. Ядро в 10000 раз меньше атома, однако практически вся его масса сосредоточена именно в ядре. Главной характеристикой атомного ядра, является то, что он имеет положительный заряд и состоит из протонов и нейтронов. Протоны заряжены положительно, а нейтроны не имеют заряда (они нейтральны).

Связаны они друг с другом с помощью сильного ядерного взаимодействия. Масса протона примерно равна массе нейтрона, но при этом в 1840 раз больше массы электрона. Протоны и нейтроны имеют в химии общее название – нуклоны. Сам атом является электронейтральным.

Атом любого элемента можно обозначить электронной формулой и электронно графической формулой:

Строение атома и его польза

Рис. 1. Электронно-графическая формула атома.

Единственным химическим элементом из периодической системы, в ядре которого не содержатся нейтроны, является легкий водород (протий).

Электрон является отрицательно заряженной частицей. Электронная оболочка состоит из движущихся вокруг ядра электронов. Электроны имеют свойства притягиваться к ядру, а между друг друг на них оказывает влияние кулоновское взаимодействие. Чтобы преодолеть притяжения ядра, электроны должны получать энергию от внешнего источника. Чем дальше электрон находится от ядра, тем меньше энергии для этого необходимо.

Модели атомов

На протяжении долго времени ученые стремились познать природу атома. На раннем этапе большой вклад внес древнегреческий философ Демокрит. Хотя сейчас его теория и кажется нам банальной и слишком простой, в тот период, когда представления об элементарных частицах только начинало зарождаться, его теория о кусочках материи воспринималась совершенно серьезно. Демокрит считал, что свойства любого вещества зависят от формы, массы и других характеристик атомов. Так, например, у огня, полагал он, острые атомы – поэтому огонь обжигает; у воды атомы гладкие, поэтому она способна течь; у твердых предметов, по его представлению, атомы были шереховатые.

Демокрит считал, что из атомов состоит абсолютно все, даже душа человека.

В 1904 году Дж. Дж. Томсон предложил свою модель атома. Основные положения теории сводились к тому, что атом представлялся положительно заряженным телом, внутри которого находились электроны с отрицательным зарядом. Позже эта теория была опровергнута Э. Резерфордом.

Модель атома Томсона

Рис. 2. Модель атома Томсона.

Также в 1904 году японским физиком Х. Нагаока была предложена ранняя планетарная модель атома по аналогии с планетой Сатурн. Электроны по этой теории объединены в кольца и вращаются вокруг положительно заряженного ядра. Эта теория оказалась ошибочной.

В 1911 году Э. Резерфорд, проделав ряд опытов, сделал выводы, что атом по своему строению похож на планетную систему. Ведь электроны, словно планеты, движутся по орбитам вокруг тяжелого положительно заряженного ядра. Однако это описание противоречило классической электродинамике. Тогда датский физик Нильс Бор в 1913 году ввел постулаты, суть которых заключалась в том, что электрон, находясь в некоторых специальных состояниях, не излучает энергию. Таким образом, постулаты бора показали, что для атомов классическая механика неприменима. Планетарная модель, описанная Резерфордом и дополненная Бором, получила название – планетарная модель Бора-Резерфорда.

Планетарная модель Бора-Резерфорда

Рис. 3. Планетарная модель Бора-Резерфорда.

Дальнейшее изучение атома привело к созданию такого раздела, как квантовая механика, с помощью которого объяснялись многие научные факты. Современные представления об атоме развились из планетарной модели Бора-Резерфорда.

Что мы узнали?

В данной статье по химии (8 класс) рассказывается кратко и понятно о строении атома. На протяжении многих веков ученые разных стран изучали мельчайшие частицы вещества. Появлялись разные теории, модели и разные формулы строения атома. Современные представления об атоме основываются на модели Бора-Резерфорда, по которой атом состоит из ядра и электронного облака, в котором электроны движутся вокруг ядра.

Тест по теме

Оценка доклада

Средняя оценка: 4.4. Всего получено оценок: 1765.

Источник

Âñåì ïðèâåò.  ñâî¸ âðåìÿ ìåíÿ ïðîñòî ïîðàçèëî, êîãäà ÿ óçíàë, ïî÷åìó æå àòîìû âçàèìîäåéñòâóþò ìåæäó ñîáîé. Âîò ñåãîäíÿ, ÿ õî÷ó ñ âàìè ýòèì ïîäåëèòñÿ.

Читайте также:  О пользе хондроитина и глюкозамина

Äåëî â òîì, ÷òî àòîìû íåñîâåðøåííû. È îíè, ñòðåìÿñü ê ãàðìîíèè, èùóò òîãî, ñ êåì îíè ýòî ìîãóò ñäåëàòü. Çâó÷èò ïîðàçèòåëüíî, íî íà äåëå âñ¸ òàê è åñòü, à òåïåðü ïîäðîáíåé.

Äëÿ íà÷àëà äàâàéòå ïîñìîòðèì, êàê óñòðîåí àòîì. Îí äîâîëüíî ñèëüíî ïîõîæ íà ñîëíå÷íóþ ñèñòåìó. Âíóòðè ó íåãî ìàññèâíîå ÿäðî, à âîêðóã ëåòàþò îòíîñèòåëüíî ìàëåíüêèå ýëåêòðîíû. Ïîïîäðîáíåé ðàññìîòðèì ñàìûé ïðîñòîé àòîì âî âñåëåííîé – àòîì âîäîðîäà. ßäðî ó íåãî â ïîäàâëÿþùåì áîëüøèíñòâå ñëó÷àåâ ïðåäñòàâëÿåò îáû÷íûé ïðîòîí. Ìàññèâíóþ ïîëîæèòåëüíî çàðÿæåííóþ ÷àñòèöó. À ýëåêòðîí÷èê çàðÿæåí îòðèöàòåëüíî, âñïîìíèâ ÷òî ðàçíîèì¸ííî çàðÿæåííûå ÷àñòèöû ïðèòÿãèâàþòñÿ, ïîíèìàåì ïî÷åìó ýëåêòðîí âîêðóã ïðîòîíà êðóòèòñÿ, îí ïîïðîñòó ïðèòÿãèâàåòñÿ êóëîíîâñêèìè ñèëàìè.

Òåïåðü ÷àñòíîñòè. Ïîðîé, ýòî ïðîèñõîäèò äîâîëüíî ðåäêî, â ÿäðå âîäîðîäà ïðèñóòñòâóåò íå òîëüêî ïðîòîí, íî è åù¸ îäíà ìàññèâíàÿ ÷àñòèöà – íåéòðîí. Îíà íå èìååò çàðÿäà, à èìååò òîëüêî ìàññó, ïðèìåðíî òàêóþ æå, êàê è ïðîòîí. È ìû ïîëó÷àåì àòîì âîäîðîäà, êîòîðûé âåñèò âäâîå áîëüøå, ÷åì åãî ñîáðàò èç ïåðâîãî ïðèìåðà, íî îáëàäàåò òåìè æå õèìè÷åñêèìè ñâîéñòâàìè.

Òàêèå àòîìû îäíî è òîãî æå ýëåìåíòà êîòîðûå îòëè÷àþòñÿ òîëüêî ìàññàìè íàçûâàþòñÿ êðóòûì ñëîâîì – èçîòîï. Îáû÷íî äëÿ íèõ íå ïðèäóìûâàþò îòäåëüíûõ íàçâàíèé, ïðîñòî ãîâîðÿò óðàí 235 èëè óðàí 238. Íî äëÿ âîäîðîäà ñäåëàëè èñêëþ÷åíèÿ è âñå òðè åãî âîçìîæíûõ èçîòîïà èìåþò ñâîè èìåíà, ïðîòèé – îäèíîêèé ïðîòîí, äåéòåðèé – ïðîòîí + íåéòðîí, è òðèòèé – ïðîòîí + äâà íåéòðîíà.

Î òîì ñêîëüêî è êàêèõ èçîòîïîâ íà íàøåé çåìëå, ìû ìîæåì ïðèìåðíî óçíàòü èç òàáëèöû Ìåíäåëååâà, äîñòàòî÷íî ïîñìîòðåòü íà îòíîñèòåëüíóþ àòîìíóþ ìàññó, êîòîðàÿ íàïèñàíà ðÿäûøêîì ñ êàæäûì ýëåìåíòîì

Äëÿ âîäîðîäà ýòî 1,00794. Àòîìíàÿ ìàññà ÷èñòîãî ïðîòîíà + ýëåêòðîí íåìíîãî ìåíüøå. Ðàçíèöà ïîëó÷àåòñÿ îò òîãî, ÷òî â ïðèðîäå åñòü èçîòîïû. Âçÿëè ìèëëèîí àòîìîâ âçâåñèëè èõ, íî íå â êèëîãðàììàõ, à â îòíîñèòåëüíûõ àòîìíûõ ìàññàõ, êîòîðàÿ ðàâíà êñòàòè 1/12 ìàññû èçîòîïà óãëåðîäà Ñ12, à ïîòîì ðåçóëüòàò ðàçäåëèëè íà ìèëëèîí è ïîëó÷èëè 1,00794. Äðóãèìè ñëîâàìè, ýòî ÷èñëî ñóììà ìàññ èçîòîïîâ, óìíîæåííûõ íà èõ ïðîöåíòíîå ñîäåðæàíèå íà çåìëå.

Òåïåðü ïîäðîáíåé îá àòîìàõ. Ýëåêòðîíû êðóòÿòñÿ âîêðóã ÿäðà, íî íå ãäå çàõîòÿò, à òîëüêî íà îñîáûõ îðáèòàõ, êîòîðûå íàçûâàþòñÿ ýíåðãåòè÷åñêèå îðáèòàëè. È âîò çäåñü íà÷èíàåòñÿ ñàìîå èíòåðåñíîå. Îðáèòàëè ïðåäñòàâëÿþò ñîáîé êîíöåíòðè÷åñêèå ñôåðû, ò.å îäíà âíóòðè äðóãîé, êàê ìàòð¸øêè, à âíóòðè åñòü åù¸ òàêàÿ øòóêà êàê ïîäóðîâåíü. È ó êàæäîãî ïîäóðîâíÿ åñòü ìàêñèìàëüíîå êîëè÷åñòâî àòîìîâ, êîòîðûå îí ìîæåò óìåñòèòü âíóòðè, òàêæå åñòü îïðåäåë¸ííûå ïðàâèëà çàïîëíåíèÿ. Åñëè àòîì èìååò ïîëíîñòüþ çàâåðø¸ííóþ âíåøíþþ îðáèòàëü, òî îí – ñîâåðøåííûé. Åìó âîîáùå íè÷åãî íå íóæíî, îí è ñàì ïî ñåáå êðóòîé. Îí âîîáùå íå áóäåò ó÷àñòâîâàòü â õèìè÷åñêèõ ðåàêöèÿõ (íó èëè äåëàåò ýòî êðàéíå íåîõîòíî).  õèìèè òàêèå àòîìû íàçûâàþò – áëàãîðîäíûìè, èëè èíåðòíûìè. Ýòî, íàïðèìåð ãåëèé, íåîí àðãîí.

Îñòàëüíûì àòîìàì, êîòîðûå èìåþò íåçàâåðø¸ííûå ïîäóðîâíè ýíåðãåòè÷åñêèõ îðáèòàëåé, òîæå õî÷åòñÿ ñîâåðøåíñòâà, è îíè íà÷èíàþò âçàèìîäåéñòâîâàòü äðóã ñ äðóãîì. Ñàìûé ïðîñòîé ïðèìåð ìîæåò íàì ïîêàçàòü àòîì òîò æå àòîì âîäîðîäà, ó êîòîðîãî âîêðóã ÿäðà áîëòàåòñÿ îäèíîêèé ýëåêòðîí. Åãî âíåøíÿÿ ýíåðãåòè÷åñêàÿ îðáèòàëü ìîæåò âìåñòèòü äâà, à ïîòîìó îí íåñîâåðøåíåí. È îí õîäèò âîêðóã, èùåò òàêîãî æå áåäîëàãó, ñ êîòîðûì ìîæíî çàäðóæèòñÿ. Ïðè âñòðå÷å ñ äðóãèì àòîìîì âîäîðîäà, îíè ñîåäèíÿþòñÿ. Èõ ýëåêòðîíû òåïåðü íå ïðèíàäëåæàò îäíîìó, à îäíîâðåìåííî îáîèì àòîìàì, è âðîäå òåïåðü íà ýíåðãåòè÷åñêîé îðáèòàëè êàæäîãî èç íèõ ïî äâà ýëåêòðîíà. Îíè òåïåðü ñ÷àñòëèâû. Îíè òåïåðü íå àòîìû, âìåñòå îíè ñòàëè ìîëåêóëîé. Ýòî ìîëåêóëà äîâîëüíî ãàðìîíè÷íà è êàæäûé àòîì ó÷àñòíèê îáëàäàåò îäèíàêîâûìè ïðàâàìè, ïîòîìó ÷òî òÿíåò ê ñåáå ýëåêòðîí ñ îäèíàêîâîé ñèëîé. Òàêàÿ ñâÿçü àòîìîâ íàçûâàåòñÿ êîâàëåíòíàÿ íåïîëÿðíàÿ.

Íåìíîãî áîëåå ñëîæíûé ïðèìåð ñ àòîìîì êèñëîðîäà è âîäîðîäà. Êèñëîðîä èìååò ïîëíîñòüþ çàïîëíåííóþ âíóòðåííþþ îðáèòàëü äâà èç äâóõ ýëåêòðîíîâ, è íå äî êîíöà çàïîëíåííóþ âíåøíþþ, øåñòü èç âîñüìè ýëåêòðîíîâ. ×òîáû ñòàòü ïîëíîñòüþ ñîâåðøåííûì, åìó ëèáî íóæíî îòîáðàòü ó êîãî-íèáóäü äâà ýëåêòðîíà, ëèáî ðàçäàòü 6. Ïðåäñòàâüòå åñëè áû ó íàñ èçäàëè óêàç, î òîì ÷òî êâàðòèðû äàþò òåì ñåìüÿì ó êîãî ëèáî äâà ðåá¸íêà ëèáî 10. À ó âàñ èõ 8, êîíå÷íî ïðîùå âçÿòü åù¸ äâóõ ÷åì ðàçäàòü ñâîèõ øåñòåðûõ. Ïîýòîìó àòîì êèñëîðîäà íà÷èíàåò èñêàòü àòîìû âîäîðîäà ñ îäíèì ðåá¸íêîì, è ïîíÿòíî, ÷òî åìó íóæíî äâà òàêèõ àòîìà. Âòðî¸ì îíè îáðàçóþò òàêóþ øâåäñêóþ ñåìüþ, â êîòîðîé 10 äåòåé – ýëåêòðîíîâ. È ñíîâà òðè àòîìà îáðàçóþò íîâóþ ìîëåêóëó, íîâîå âåùåñòâî, âû åãî êîíå÷íî óçíàëè — ýòî âîäà. Òåïåðü àòîì êèñëîðîäà èìååò 8 ýëåêòðîíîâ íà âíåøíåé îðáèòàëè, à êàæäûé èç àòîìîâ âîäîðîäà ïî äâà.  ýòîé ìîëåêóëå íå âñ¸ òàê ðàäóæíî êàê â ïåðâîì ïðèìåðå, äåëî â òîì ÷òî êèñëîðîä ãîðàçäî ñèëüíåå òÿíåò ê ñåáå ýëåêòðîíû. Îí òàêàÿ ÿæìàòü, êîòîðàÿ ñîáèðàåò ýëåêòðîíû âîêðóã ñåáÿ, à àòîìû âîäîðîäà, ïðèõîäÿò ê íèì òîëüêî íà âûõîäíûå. Ýòîò âèä ñâÿçè íàçûâàåòñÿ êîâàëåíòíàÿ ïîëÿðíàÿ.

Читайте также:  Рыбий жир польза ростов на дону

ß íåìíîãî ñëóêàâèë, ãîâîðÿ î òîì, ÷òî êèñëîðîäó íóæíî ðàçäàòü 6 ýëåêòðîíîâ, ÿ íå óïîìÿíóë î ïîäóðîâíÿõ. Ó íåãî åñòü âîçìîæíîñòü îòäàòü òîëüêî äâà ýëåêòðîíà ÷òîáû ïîëó÷èòü çàâåðø¸ííîñòü ïîäóðîâíåé. Íî òàêèõ ïðîôèòîâ êàê ïðè ïîëíîñòüþ çàâåðø¸ííîé âíåøíåé îðáèòàëè îí íå ïîëó÷èò, ïîýòîìó äåëàåò òàê êðàéíå íåîõîòíî.

Åù¸ áîëåå æåñòîêèé ïðèìåð, êîãäà àòîìó íå õâàòàåò âñåãî îäíîãî ýëåêòðîíà íà âíåøíåé îðáèòàëè è îí õî÷åò ïðèíÿòü ýòîò ýëåêòðîí î÷åíü ñèëüíî, à äðóãîé òàê æå ñèëüíî õî÷åò åãî îòäàòü.  ýòîì ñëó÷àå ìû ïîëó÷àåì ñèòóàöèþ, êîãäà îäèí àòîì ñîâñåì îòáèðàåò ýëåêòðîí ó äðóãîãî, è äâà ýòèõ àòîìà äåðæàòñÿ äðóã îêîëî äðóãà çà ñ÷¸ò ýëåêòðîìàãíèòíûõ ñèë.  ýòîì ñëó÷àå ãîâîðÿò î èîííîé ñâÿçè. Ñàìûé ÿðêèé ïðèìåð òàêîé ñâÿçè — ýòî ìîëåêóëà îáû÷íîé ñîëè NaCl.

 öåëîì æåëàíèå àòîìîâ çàâåðøèòü ñâîþ îðáèòàëü è îáðàçóåò âñ¸ ìíîãîîáðàçèå õèìè÷åñêèõ ðåàêöèé, äàëüøå ÷àñòíîñòè.

Íå ïóòàéòå õèìè÷åñêèå ðåàêöèè ñ ðåàêöèÿìè ñèíòåçà èëè ðàñïàäà, ïðè êîòîðûõ ïîëó÷àþòñÿ íå íîâûå õèìè÷åñêèå âåùåñòâà, à íîâûå ýëåìåíòû òàáëèöû Ìåíäåëååâà. Îá ýòîì ÿ îáÿçàòåëüíî ðàññêàæó êà íèáóäü â äðóãîé ðàç.

Источник

Состав атома.

Атом состоит из атомного ядра и электронной оболочки.

Ядро атома состоит из протонов (p+) и нейтронов (n0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N(p+) равно заряду ядра (Z) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N(p+) = Z

Сумма числа нейтронов N(n0), обозначаемого просто буквой N, и числа протонов Z называется массовым числом и обозначается буквой А.

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е-).

Число электронов N(e-) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома – сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент – вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп – совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э – символ элемента), например: .

Строение электронной оболочки атома

Атомная орбиталь – состояние электрона в атоме. Условное обозначение орбитали – . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s, p, d и f.

Электронное облако – часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание: иногда понятия “атомная орбиталь” и “электронное облако” не различают, называя и то, и другое “атомной орбиталью”.

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный (“энергетический”) уровень, их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s-подуровень (состоит из одной s-орбитали), условное обозначение – .
p-подуровень (состоит из трех p-орбиталей), условное обозначение – .
d-подуровень (состоит из пяти d-орбиталей), условное обозначение – .
f-подуровень (состоит из семи f-орбиталей), условное обозначение – .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s, 3p, 5d означает s-подуровень второго уровня, p-подуровень третьего уровня, d-подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n. Общее число орбиталей на одном уровне равно n2. Соответственно этому, общее число облаков в одном слое равно также n2.

Читайте также:  Рис при сахарном диабете 2 типа польза и вред

Обозначения: – свободная орбиталь (без электронов), – орбиталь с неспаренным электроном, – орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии – электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули – на одной орбитали не может быть больше двух электронов.

3. Правило Хунда – в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n2.

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев (“электронная схема”).

Примеры электронного строения атомов:

Валентные электроны – электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны – 4s2, они же и валентные; у атома Fe внешние электроны – 4s2, но у него есть 3d6, следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция – 4s2, а атома железа – 4s23d6.

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система – графическое выражение периодического закона.

Естественный ряд химических элементов – ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем “разрезания” естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице – восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице – шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB – побочной подгруппе седьмой группы: остальные – аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ (“неметалличность”),
  • ослабевают восстановительные свойства простых веществ (“металличность”),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ (“неметалличность”; только в А-группах),
  • усиливаются восстановительные свойства простых веществ (“металличность”; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).

Источник