Кислород для человека вред и польза
В нашем теле кислород отвечает за процесс выработки энергии. В наших клетках только благодаря кислороду происходит оксигенация — превращение питательных веществ (жиров и липидов) в энергию клетки. При снижении парциального давления (содержания) кислорода во вдыхаемом уровне – снижается его уровень в крови — снижается активность организма на клеточном уровне. Известно, что более 20% кислорода потребляет головной мозг. Дефицит кислорода способствует Соответственно, при падении уровня кислорода страдают самочувствие, работоспособность, общий тонус, иммунитет.
Важно также знать, что именно кислород может выводить из организма токсины.
Обратите внимание, что во всех иностранных фильмах при аварии или человеку в тяжелом состоянии медики экстренных служб первым делом надевают пострадавшему кислородный аппарат, чтобы поднять сопротивляемость организма и повысить его шансы на выживание.
Лечебное воздействие кислорода известно и используется в медицине с конца XVIII века. В СССР активное использование кислорода в профилактических целях началось в 60х годах прошлого века.
Гипоксия или кислородное голодание — пониженное содержание кислорода в организме или отдельных органах и тканях. Гипоксия возникает при недостатке кислорода во вдыхаемом воздухе и в крови, при нарушении биохимических процессов тканевого дыхания. Вследствие гипоксии в жизненно важных органах развиваются необратимые изменения. Наиболее чувствительными к кислородной недостаточности являются центральная нервная система, мышца сердца, ткани почек, печени.
Проявлениями гипоксии являются нарушение дыхания, одышка; нарушение функций органов и систем.
Иногда можно услышать, что «Кислород – окислитель, который ускоряет старение организма».
Здесь из верного посыла делается неверный вывод. Да, кислород – окислитель. Только благодаря ему питательные вещества из пищи перерабатываются в энергию организма.
Страх перед кислородом связан с двумя исключительными его свойствами: свободными радикалами и отравлением им при избыточном давлении.
1. Что такое свободные радикалы?
Некоторые из огромного количества постоянно протекающих окислительных (вырабатывающих энергию) и восстановительных реакций организма не завершаются до конца, и тогда образуются вещества с нестабильными молекулами, имеющими на внешних электронных уровнях неспаренные электроны, называемые «свободные радикалы». Они стремятся захватить недостающий электрон у любой другой молекулы. Эта молекула, превратившись в свободный радикал, похищает электрон у следующей, и так далее..
Зачем это нужно? Определенное количество свободных радикалов, или оксидантов, жизненно необходимо организму. Прежде всего — для борьбы с вредными микроорганизмами. Свободные радикалы используются иммунной системой в качестве «снарядов» против «интервентов». В норме в организме человека 5% образовавшихся в ходе химических реакций веществ становятся свободными радикалами.
Главными причинами нарушения естественного биохимического равновесия и роста количества свободных радикалов ученые называют эмоциональный стресс, тяжелые физические нагрузки, травмы и истощение на фоне загрязнения воздуха, употребления в пищу консервированных и технологически неправильно переработанных продуктов, овощей и фруктов, выращенных с помощью гербицидов и пестицидов, ультрафиолетового и радиационного облучения.
Таким образом, старение — это биологический процесс замедления деления клеток, а ошибочно связываемые со старением свободные радикалы — естественные и необходимые организму механизмы защиты и их вредоносное воздействие связано с нарушением естественных процессов в организме негативными факторами окружающей среды и стрессом.
2. «Кислородом легко отравиться».
Действительно, избыток кислорода опасен. Избыток кислорода вызывает увеличение количества окисленного гемоглобина в крови и снижение количества восстановленного гемоглобина. И, поскольку именно восстановленный гемоглобин выводит углекислый газ, его задержка в тканях приводит к гиперкапнии – отравлению CO2.
При переизбытке кислорода растет число свободнорадикальных метаболитов, тех самых страшных «свободных радикалов», которые обладают высокой активностью, действуя в качестве окислителей, способных повредить биологические мембраны клеток.
Ужасно, правда? Сразу хочется перестать дышать. К счастью, для того, чтобы отравиться кислородом, необходимо повышенное давление кислорода как, например, в барокамере (при оксигенобаротерапии) или при погружении со специальными дыхательными смесями. В обычной жизни такие ситуации не встречаются.
3. «В горах мало кислорода, зато много долгожителей! Т.е. кислород вреден».
Действительно, в Советском союзе в горных районах Кавказа и в Закавказье был зарегистрировано некоторое число долгожителей. Если же посмотреть на список верифицированных (т.е. подтвержденных) долгожителей мира за всю его историю, то картина не будет такой очевидной: старейшие долгожители, зарегистрированные во Франции, США и Японии в горах не жили..
В Японии, где до сих пор живет и здравствует самая старая женщина планеты Мисао Окава, которой уже более 116 лет, находится и «остров долгожителей» Окинава. Средняя продолжительность жизни здесь у мужчин — 88 лет, у женщин — 92; это выше, чем в остальной Японии, на 10-15 лет. На острове собраны данные о семистах с лишним местных долгожителей старше ста лет. Там говорят, что: «В отличие от кавказских горцев, хунзакутов Северного Пакистана и других народностей, похваляющихся своим долголетием, все окинавские акты рождения с 1879 года задокументированы в японском семейном реестре — косэки». Сами окинвацы считают, что секрет их долголетия покоится на четырех китах: диета, активный образ жизни, самодостаточность и духовность. Местные жители никогда не переедают, придерживаясь принципа «хари хачи бу» — наесться на восемь десятых. Эти «восемь десятых» у них состоят из свинины, водорослей и тофу, овощей, дайкона и местного горького огурца. Старейшие окинавцы не сидят без дела: они активно работают на земле, и их отдых тоже активен: больше всего они любят играть в местную разновидность крокета.: Окинаву называют самым счастливым островом – там нет свойственной крупным островам Японии спешки и стресса. Местные жители привержены философии юимару — «добросердечное и дружеское совместное усилие».
Интересно, что как только окинавцы переезжают в другие части страны, то среди таких людей уже не встречается долгожителей.. Таким образом, ученые, изучающие этот феномен выяснили, что в долгожительстве островитян генетический фактор роли не играет. А мы, со своей стороны, считаем крайне важным, что Окинавские острова находятся в активно продуваемой ветрами зоне в океане, и уровень содержания кислорода в таких зонах фиксируют как наиболее высокий – 21,9 – 22% кислорода.
Поэтому, задача системы OxyHaus не столько ПОВЫСИТЬ уровень кислорода в помещении, сколько ВОССТАНОВИТЬ природный его баланс.
В насыщенных естественным уровнем кислорода тканях организма ускоряется процесс обмена веществ, происходит «активация» организма, повышается его сопротивление негативным факторам, растет его выносливость и эффективность работы органов и систем.
В кислородных концентраторах Atmung применена разработанная NASA технология PSA (процесс абсорбции переменного давления). Внешний воздух проходит очистку через систему фильтров, после чего прибор при помощи молекулярного сита из вулканического минерала цеолита выделяет кислород. Чистый, почти 100% кислород подается потоком под давлением 5-10 литров в минуту. Этого давления дкостаточно, чтобы обеспечить природный уровень кислорода в помещении площадью до 30 метров.
«Но ведь на улице грязный воздух, а кислород переносит с собой все вещества».
Именно поэтому в системах OxyHaus установлена трехступенчатая система фильтрации входящего воздуха. И уже очищенный воздух попадает на цеолитовое молекулярное сито, в котором отделяется кислород воздуха.
«Чем опасно применение системы OxyHaus? Ведь кислород взрывоопасен».
Применение концентратора безопасно. В промышленных кислородных баллонах существует опасность взрыва, поскольку в них кислород под высоким давлением. В кислородных концентраторах Atmung, на базе которых построена система, нет горючих материалов, в них использована технология PSA (процесс адсорбции переменного давления), разработанная NASA, она безопасна и проста в эксплуатации.
«Зачем мне ваша система? Я могу снизить уровень СО2 в помещении открыв окно и проветрив»
Действительно, регулярное проветривание очень полезная привычка и мы также его рекомендуем для снижения уровня СО2. Однако, городской воздух нельзя назвать по-настоящему свежим – в нем, кроме повышенного уровня вредных веществ, снижен уровень кислорода. В лесу содержание кислорода около 22%, а в городском воздухе – 20,5 – 20,8%. Эта кажущаяся незначительной разница ощутимо влияет на организм человека.
«Я попробовал подышать кислородом и ничего не почувствовал»
Воздействие кислорода не стоит сравнивать с воздействием энергетиков. Положительное воздействие кислорода имеет накопительный эффект, поэтому кислородный баланс организма необходимо пополнять регулярно. Мы рекомендуем включать систему OxyHaus на ночь и на 3-4 часа в день во время физических или интеллектуальных нагрузок. Использование системы 24 часа в сутки не обязательно.
«В чем разница с очистителями воздуха?»
Очиститель воздуха выполняет только функцию уменьшения количества пыли, но не решает проблему баланса уровня кислорода духоты.
«Какая концентрация кислорода в помещении является наиболее благоприятной?»
Наиболее благоприятно содержание кислорода близкое к такому же, как в лесу или на берегу моря: 22%. Даже если у вас, за счет естественной вентиляции, уровень кислорода будет чуть выше 21% — это благоприятная атмосфера.
«Можно ли отравиться кислородом?»
Кислородное отравление, гипероксия, — возникает вследствие дыхания кислородосодержащими газовыми смесями (воздуха, нитрокса) при повышенном давлении. Отравление кислородом может произойти при использовании кислородных аппаратов, регенеративных аппаратов, при использовании для дыхания искусственных газовых смесей, во время проведения кислородной рекомпрессии, а также вследствие превышения лечебных доз в процессе оксигенобаротерапии. При отравлении кислородом развиваются нарушения функций центральной нервной системы, органов дыхания и кровообращения.
Человек может контролировать потребляемую пищу, жидкость и воздух. В последние 50 лет уровень общей грамотности населения по вопросам питания значительно повысился. Почти все знают, что еда имеет энергетический эквивалент. Поэтому нужно «закидывать» внутрь ровно столько калорий, сколько наш организм «сжигает» за день. Представление о потреблении кислорода у среднестатистического россиянина пока довольно туманные. Более «продвинутые» в этом вопросе – жители мегаполисов. Но разъяснительная работа тут не причем. Они просто физически ощущают, что на загазованных улицах самочувствие ухудшается, а в комнате, где есть концентратор кислорода, – улучшается. Так сколько же нужно кислорода для нормального функционирования организма?
Клеточное дыхание
Человек делает около 20000 вдохов в сутки. Все живые клетки организма дышат. И к каждой из них нужно доставить молекулу кислорода. 20 миллиардов кровяных телец – эритроцитов работают как грузовики для доставки кислорода. Бытовой газ в сельской местности доставляют в специальных баллонах. Каждый грузовик-эритроцит тоже имеет 250 миллионов баков для кислорода – молекул гемоглобина. Кровяные тельца загружаются в легких и начинают развозить кислород, двигаясь сначала по артериям, а потом по мельчайшим капиллярам. Там происходит разгрузка и наполнение углекислым газом. Обратный путь по «автострадам вен» занимает время до следующего вздоха. Итак, 200 миллиардов грузовиков должны развозить 250 миллионов баллонов, выполняя по 20 тысяч рейсов в сутки. Каждый клиент-молекула должен получить свой груз вовремя, и речь идет не о том, что это полезно: это вопрос жизни или смерти клетки. Проблема от которой сойдет с ума лучший корпоративный логист, «зависнет» надолго любой супер компьютер, но с ней легко справляется мозг человека. Он всегда успешно решает эту задачу при условии, что в легкие попадает достаточное количество кислорода.
Сколько нужно кислорода?
Еще со школьных уроков химии и биологии многие помнят, что в атмосфере содержится около 1/5 части кислорода. Средняя величина, фиксируемая в местности, расположенной на уровне моря, составляет 20,9%. Это норма при которой человек чувствует себя комфортно. В горах атмосферное давление ниже, соответственно содержание кислорода на единицу объема также падает.
В городах снижение качества вдыхаемого воздуха связано с превышением концентрации угарного и углекислого газа, вредных газообразных примесей. Работающие заводы и автомобили делают дыхание горожанина затрудненным.
Содержание кислорода в артериальной крови можно измерить в медицинской лаборатории. Значения в пределах 96-99%. Снижение показателя даже на 2% свидетельствует о наличии серьезного заболевания.
Кислород, растворенный в воздухе, не может достичь высоких концентраций опасных для здоровья. Но можно ли искусственно создать условия, при которых этот газ способен покалечить или даже убить человека? Да, можно.
Кислородное отравление
Сбой в газообмене организма, вызывает не избыток кислорода в крови, а задержка углекислого газа в клетках. «Грузовики» с кислородом разгружаются, а обратно идут пустые, так как не имеют восстановленного гемоглобина. Перегруженные кислородом «клеточные склады» мгновенно вызывают ухудшение самочувствия человека.
Гипероксия характеризуется:
- резкой головной болью;
- онемением пальцев рук и ног;
- судорожной дрожью.
Человек паникует, начинает задыхаться и теряет сознание.
Такое отравление возможно только при дыхании через трубку воздушной смесью, находящейся в баллоне под давлением. Причины возникновения болезненного состояния объясняются нарушением правил эксплуатации оборудования для водолазов, пожарников и летчиков и незнанием индивидуальных особенностей организма пострадавшего.
Таким образом, говорить о возможном вреде кислорода можно работающих в экстремальной среде, не пригодной для обитания человека, используя для поддержания жизнедеятельности кислород под давлением.
Аппараты для обогащения воздуха, такие как концентратор кислорода atmung стремятся не создать искусственную среду, а восстановить естественную.
Недавно страну облетела новость: госкорпорация «Роснано» инвестирует 710 млн рублей в производство инновационных лекарственных препаратов против возрастных заболеваний. Речь идет о так называемых «ионах Скулачева» – фундаментальной разработке отечественных ученых. Она поможет справиться со старением клеток, которое вызывает кислород.
«Как же так? – удивитесь вы. – Без кислорода невозможно жить, а вы утверждаете, что он ускоряет старение!» На самом деле противоречия тут нет. Двигатель старения – активные формы кислорода, которые образуются уже внутри наших клеток.
Источник энергии
Немногие знают, что чистый кислород опасен. Его в небольших дозах применяют в медицине, но если дышать им долго, можно отравиться. Лабораторные мыши и хомячки, к примеру, живут в нем всего несколько дней. В воздухе же, которым мы дышим, кислорода чуть больше 20%.
Почему же столько живых существ, в том числе человек, нуждаются в небольшом количестве этого опасного газа? Дело в том, что О2 – мощнейший окислитель, перед ним не может устоять практически ни одно вещество. А всем нам нужна энергия, чтобы жить. Так вот, получать ее мы (а также все животные, грибы и даже большинство бактерий) можем, именно окисляя те или иные питательные вещества. Буквально сжигая их, как дрова в каминной топке.
Происходит этот процесс в каждой клетке нашего тела, где для него имеются специальные «энергетические станции» – митохондрии. Именно туда в конечном итоге попадает все, что мы съели (разумеется, переваренное и разложенное до простейших молекул). И именно внутри митохондрий кислород делает единственное, что он умеет, – окисляет.
Такой способ получения энергии (его называют аэробным) весьма выгоден. Например, некоторые живые существа умеют получать энергию и без окисления кислородом. Только вот благодаря этому газу из одной и той же молекулы получается в несколько раз больше энергии, чем без него!
Скрытый подвох
Из 140 литров кислорода, которые мы вдыхаем за день из воздуха, почти все уходит на получение энергии. Почти – но не все. Примерно 1% тратится на производство… яда. Дело в том, что во время полезной деятельности кислорода образуются и опасные вещества, так называемые «активные формы кислорода». Это – свободные радикалы и перекись водорода.
Зачем вообще природе вздумалось производить этот яд? Некоторое время назад ученые нашли этому объяснение. Свободные радикалы и перекись водорода при помощи особого белка-фермента образуются на внешней поверхности клеток, с их помощью наш организм уничтожает бактерии, попавшие в кровь. Очень разумно, если учесть, что радикал гидроксида по своей ядовитости соперничает с хлоркой.
Однако не весь яд оказывается за пределами клеток. Он образуется и в тех самых «энергетических станциях», митохондриях. В них же имеется своя собственная ДНК, которую и повреждают активные формы кислорода. Дальше все понятно и так: работа энергетических станций разлаживается, ДНК повреждена, начинается старение…
Зыбкий баланс
К счастью, природа позаботилась о том, чтобы нейтрализовать активные формы кислорода. За миллиарды лет кислородной жизни наши клетки в общем-то научились держать О2 в узде. Во-первых, его не должно быть слишком много или слишком мало – и то и другое провоцирует образование яда. Поэтому митохондрии умеют «выгонять» лишний кислород, а также «дышать» так, чтобы он не мог образовать те самые свободные радикалы. Более того, в арсенале нашего организма есть вещества, которые неплохо борются со свободными радикалами. Например, ферменты-антиоксиданты, которые превращают их в более безобидную перекись водорода и просто кислород. Другие ферменты тут же берут в оборот перекись водорода, превращая ее в воду.
Вся эта многоступенчатая защита неплохо работает, но со временем начинает давать сбои. Сначала ученые думали, что с годами ферменты-защитники от активных форм кислорода слабеют. Оказалось, нет, они по-прежнему бодры и активны, однако по законам физики какие-то свободные радикалы все равно минуют многоступенчатую защиту и начинают разрушать ДНК.
Можно ли поддержать свою природную защиту от ядовитых радикалов? Да, можно. Ведь чем дольше живут в среднем те или иные животные, тем лучше отточена их защита. Чем интенсивнее обмен веществ у того или иного вида, тем эффективнее его представители справляются со свободными радикалами. Соответственно, первая помощь себе изнутри – вести активный образ жизни, не позволяя обмену веществ замедлиться с возрастом.
Тренируем молодость
Есть еще несколько обстоятельств, которые помогают нашим клеткам справляться с ядовитыми производными кислорода. Например, поездка в горы (1500 м и выше над уровнем моря). Чем выше, тем меньше в воздухе кислорода, и жители равнины, попав в горы, начинают чаще дышать, им трудно двигаться – организм пытается компенсировать нехватку кислорода. Через две недели жизни в горах наш организм начинает приспосабливаться. Повышается уровень гемоглобина (белок крови, который разносит кислород из легких во все ткани), а клетки учатся использовать О2 экономичнее. Возможно, говорят ученые, это одна из причин того, что среди горцев Гималаев, Памира, Тибета, Кавказа много долгожителей. И даже если вы попадете в горы только на время отпуска раз в год, вы получите те же самые выгодные изменения, пусть всего на месяц.
Итак, можно научиться вдыхать много кислорода или, наоборот, мало, существует масса дыхательных техник обоих направлений. Однако по большому счету организм все равно будет поддерживать количество кислорода, попадающего в клетку, на некоем среднем, оптимальном для себя и своей нагрузки уровне. И тот самый 1% будет уходить на производство яда.
Поэтому ученые считают, что действеннее будет зайти с другой стороны. Оставить в покое количество О2 и усилить клеточную защиту от его активных форм. Нужны антиоксиданты, причем такие, которые смогут проникать внутрь митохондрий и обезвреживать яд именно там. Как раз такие и хочет выпускать «Роснано». Возможно, уже через несколько лет подобные антиоксиданты можно будет принимать, как нынешние витамины А, Е и С.
Молодильные капли
Перечень современных антиоксидантов давно уже не ограничивается перечисленными витаминами А, Е и С. Среди новейших открытий – ионы-антиоксиданты SkQ, разработанные группой ученых под руководством действительного члена Академии наук, почетного президента Российского общества биохимиков и молекулярных биологов, директора Института физико-химической биологии им. А. Н. Белозерского МГУ, лауреата Государственной премии СССР, основателя и декана факультета биоинженерии и биоинформатики МГУ Владимира Скулачева.
Еще в 70-е годы ХХ века он блестяще доказал теорию о том, что митохондрии являются «электростанциями» клеток. Для этого были изобретены положительно заряженные частицы («ионы Скулачева»), которые могут проникать внутрь митохондрий. Теперь академик Скулачев и его ученики «прицепили» к этим ионам вещество-антиоксидант, которое способно «разобраться» с ядовитыми соединениями кислорода.
На первом этапе это будут не «таблетки от старости», а препараты для лечения конкретных болезней. Первыми в очереди стоят глазные капли для лечения некоторых возрастных проблем со зрением. Подобные препараты уже дали совершенно фантастические результаты при испытании на животных. В зависимости от вида, новые антиоксиданты могут снижать раннюю смертность, увеличивать среднюю продолжительность жизни и продлевать максимальный возраст – заманчивые перспективы!
Смотрите также:
- Российские химики уже готовят эликсир молодости. Кому он будет доступен? →
- Ученые: человек будет жить до 120 лет. И умирать молодым! →
- Почему мы стареем? Самые популярные и сенсационные теории →