Какие доводы свидетельствуют в пользу симбиотической гипотезы происхождения эукариотической клетки

Гипотезы происхождения жизни на Земле
1. Дайте определения понятий.
Жизнь – активное, идущее с затратой энергии, полученной извне, поддержание и самовоспроизведение специфических структур, состоящих из биополимеров – белков и нуклеиновых кислот.
Креационизм – теологическая и мировоззренческая концепция, согласно которой основные формы органического мира, человечество, планета Земля, а также мир в целом, рассматриваются как непосредственно созданные Творцом или Богом.
Коацерваты – капли или слои с большей концентрацией коллоида (разведённого вещества), чем в остальной части раствора того же химического состава.
Пробионты – белковые коацерваты, гипотетический первичные организмы (клетки), положившие начало всему современному разнообразию жизни на Земле, содержавшие макромолекулы (пробелки и про-ДНК) и получившие способность к самовоспроизведению.
2. Каковы основные отличительные признаки живого от неживого?
Живое отличается от неживого такими признаками, как: единство химического состава, единство структурной организации, открытость, обмен веществ и энергии, самовоспроизведение, саморегуляция, развитие и рост, раздражимость, наследственность и изменчивость.
3. Каковы современные взгляды ученых на происхождение жизни?
В современной науке принята гипотеза абиогенного (небиологического) происхождения жизни под действием естественных причин в результате длительного процесса космической, геологической и химической эволюции – абиогенез. Первый этап возникновения живого связан с химической эволюцией, в результате чего образовались различные углеводородные соединения. Второй этап возникновения живого связан с появлением белковых веществ. Третий этап возникновения жизни связан с формированием у органических соединений способности к самовоспроизведению. Для всех ныне существующих организмов характерно такое направление потока информации: ДНК РНК белок.
4. Выполните самостоятельную работу.
Анализ и оценка различных гипотез происхождения жизни на Земле
Результаты занесите в таблицу.
Гипотезы происхождения жизни на Земле
Сделайте вывод о том, можно ли считать, что проблема происхождения жизни на Земле в настоящее время уже решена.
Гипотеза абиогенного происхождения жизни в процессе биохимической эволюции с научной точки зрения является наиболее разработанной. Однако нерешенным является вопрос, когда и где происходил абиогенный синтез органических соединений и, самое главное, как произошел скачок от неживого к живому.
Основные этапы развития жизни на Земле
1. Заполните таблицу.
Основные этапы развития жизни на Земле с позиций теории биопоэза
2. Какие существуют гипотезы происхождения эукариот?
Большинство ученых считают, что эукариоты возникли от прокариотических клеток. Существуют две гипотезы происхождения эукариот:
1. эукариотическая клетка и ее органоиды образовывались путем впячивания клеточной мембраны;
2. симбиотическая гипотеза, согласно которой митохондрии, пластиды, базальные тельца ресничек и жгутиков были когда-то свободными прокариотами. Органеллами они стали в процессе симбиоза.
3. Какие факты свидетельствуют в пользу гипотезы симбиотического происхождения эукариотической клетки?
В пользу этой гипотезы свидетельствует наличие собственных РНК и ДНК в митохондриях и хлоропластах. По своему строению РНК хлоропластов сходны с РНК цианобактерий, РНК митохондрий сходны с РНК пурпурных бактерий.
Усложнение живых организмов на Земле в процессе эволюции
1. Дайте определения понятий.
Эра – это участок геохронологической шкалы, крупный Земли.
Период – это участок геохронологической шкалы, разделяющий эру на несколько частей.
2. Каковы основные причины многообразия видов организмов на Земле?
Причины многообразия видов – результат взаимодействия движущих сил эволюции: наследственной изменчивости, борьбы за существование, естественного отбора. На Земле существуют различные среды обитания. В связи с этим каждый вид приспособился к условиям жизни каждый в своей среде. Большое разнообразие видов в природе уменьшает шансы вымирания.
3. Заполните таблицу.
Усложнение живых организмов на Земле
- Что такое клетка?
- Какие
организмы называют прокариотами? - В чем отличие эукариот
от прокариот?
В настоящее время не
вызывает сомнения тот факт, что
жизнь, прежде чем она достигла
современного многообразия, прошла длительный путь эволюции. Вы
уже знаете, что
существует много гипотез, пытающихся объяснить возникновение и развитие жизни на нашей планете. И хотя они предлагают различные подходы к решению данной проблемы, большинство из них предполагает
наличие трех эволюционных этапов: химии ской, предбиологической и биологической эволюции.
На этапе химической эволюции происходил абиогенный
синтез органических полимеров. На втором этапе формировались белковоуклеиново-липоидные
комплексы (ученые называли их по-разному: коацерваты, гиперциклы, пробионты, прогеноты и т. д.), способные к упорядоченному обмену веществ и самовоспроизведению. В результате предбиологического естественного отбора появились первые
примитивные живые
организмы, которые вступили в биологический естественныи отбор и дали начало всему многообразию органической жизни на Земле.
Большинство ученых считают, что
первыми примитивными живыми организмами
были прокариоты. Они питались органическими веществами «первичного бульона>; энергию получали в процессе брожения, т.
е. были анаэробными гетеротрофами.
С увеличением численности гетеротрофных прок наркотических клеток запас органических соединений в первичном океане истощался. В этих условиях значительное преимущество при отборе получали организмы, способные к автотрофности, т. е.
к синтезу органических веществ
из
неорганических за счет реакций окисления и восстановления. Видимо, первыми автотрофными организмами были хемосинтезирующие бактерии. Следующим этапом было развитие реакций с использованием солнечного света — фотосинтез.
В
результате фотосинтеза в земной атмосфере
начал накапливаться кислород. Это явилось предпосылкой для возникновения в ходе эволюции аэробного
дыхания. Способность синтезировать при дыхании большее
количество АТФ позволила организмам расти и размножаться быстрее, а также усложнять свои структуры и обмен
веществ.
Большинство ученых считает, что
эукариоты произошли от прокариотических клеток. Существуют две
наиболее признанные гипотезы происхождения эукариотических клеток и их органоидов.
Первая гипотеза связывает происхождение эукариотической клетки и ее органоидов с процессом впячивания клеточной
мембраны.
Больше сторонников
имеет гипотеза симбиотического происхождения эукариотической клетки. Согласно этой
гипотезе,
митохондрии, пластиды и базальные тельца ресничек и жгутиков эукариотической клетки были когда-то свободноживущими прокариотическими клетками.
Органоидами они стали
в процессе симбиоза.
В пользу этои гипотезы
свидетельствует наличие собственных РНК и ДНК в митохондриях и хлоропластах. По строению РНК митохондрии сходны с
РНК пурпурных актерий, а РНК хлоропластов ближе к РНК
цианобактерий.
Данные, полученные в последние
годы в результате
изучения
строения РНК
у различных групп организмов, возможно, заставят пересмотреть
устоявшиеся взгляды.
Сравнивая последовательность нуклеотидов в рибосомных РНК ,
ученые пришли к выводу, что все живые организмы можно отнести к трем группам:
эукариотам, эубактепы — прокаририям и архебактериям. Предка, которого назвали «прогенот» (т.
е. праро ).
предполагается, что эубактерии и архебактерии могли произойти от прогенота, а современный тип эукариотической клетки,
по-видимому, возник в результате симбиоза древнего эукариота с эубактериями
Гипотеза статистического происхождения
эукариотических
клеток.
Гипотеза происхождения
эукариотических клеток и
их органоидов
путем впячивания клеточной
мембраны.
Прогенот. Эубактерии.
Архебактерии.
Какие основные этапы можно
выделить в возникновении и развитии жизни на Земле?Какие гипотезы происхождения эукариотической клетки
вам известны?Какие доводы свидетельствуют в пользу гипотезы симбиотического происхождения эукариотической клетки?
- Почему ряд ученых считают, что предком
прокариотических и эукариотических клеток мог быть
прогенот?
☰
Расцвет эукариот на Земле начался около 1 млрд лет назад, хотя первые из них появились намного раньше (возможно 2,5 млрд лет назад). Происхождение эукариот могло быть связано с вынужденной эволюцией прокариотических организмов в атмосфере, которая стала содержать кислород.
Симбиогенез — основная гипотеза происхождения эукариот
Существует несколько гипотез о путях возникновения эукариотических клеток. Наиболее популярная — симбиотическая гипотеза (симбиогенез). Согласно ей, эукариоты произошли в результате объединения в одной клетке разных прокариот, которые сначала вступили в симбиоз, а затем, все более специализируясь, стали органоидами единого организма-клетки. Как минимум симбиотическое происхождение имеют митохондрии и хлоропласты (пластиды вообще). Произошли они от бактериальных симбионтов.
Клеткой-хозяином мог быть относительно крупный анаэробный гетеротрофный прокариот, похожий на амебу. В отличие от других, он мог приобрести способность питаться путем фаго- и пиноцитоза, что позволяло ему захватывать других прокариот. Они не все переваривались, а снабжали хозяина продуктами своей жизнедеятельности). В свою очередь, получали от него питательные вещества.
Митохондрии произошли от аэробных бактерий и позволили клетке-хозяину перейти к аэробному дыханию, которое не только намного эффективней, но и облегчает существование в атмосфере, содержащей достаточно большое количество кислорода. В такой среде аэробные организмы получают преимущество над анаэробными.
Позже в некоторых клетках поселились похожие на ныне живущих синезеленых водорослей (цианобактерий) древние прокариоты. Они стали хлоропластами, дав начало эволюционной ветви растений.
Кроме митохондрий и пластид симбиотическое происхождение могут иметь жгутики эукариот. В них превратились симбионты-бактерии наподобие современных спирохет, имеющих жгутик. Считается, что в последствии из базальных тел жгутиков произошли центриоли, столь важные структуры для механизма клеточного деления эукариот.
Эндоплазматическая сеть, комплекс Гольджи, пузырьки и вакуоли могли произойти от наружной мембраны ядерной оболочки. С другой точки зрения, некоторые из перечисленных органелл могли возникнуть путем упрощения митохондрий или пластид.
Во многом неясным остается вопрос происхождения ядра. Могло ли оно также образоваться из прокариота-симбионта? Количество ДНК в ядре современных эукариот во много раз превышает его количество в митохондриях и хлоропластах. Возможно часть генетической информации последних со временем переместилась в ядро. Также в процессе эволюции происходило дальнейшее увеличение размера ядерного генома.
Кроме того в симбиотической гипотезе происхождения эукариот не все так однозначно с клеткой-хозяином. Им мог и не быть один вид прокариот. Используя методы сравнения геномов, ученые делают вывод, что клетка-хозяин близок к археям, при этом сочетает в себе признаки архей и ряда неродственных групп бактерий. Отсюда можно сделать вывод, что появление эукариот происходило в сложном сообществе прокариот. При этом процесс скорее всего начался с метаногенной археи, вступавшей в симбиоз с другими прокариотами, что было вызвано необходимостью обитания в кислородной среде. Появление фагоцитоза способствовало притоку чужих генов, а ядро образовалось для защиты генетического материала.
Молекулярный анализ показал, что различные белки эукариот происходят от разных групп прокариот.
Доказательства симбиогенеза
В пользу симбиотического происхождения эукариот говорит то, что митохондрии и хлоропласты имеют собственную ДНК, причем кольцевую и не связанную с белками (также обстоит дело у прокариот). Однако в генах митохондрий и пластид есть интроны, чего нет у прокариот.
Пластиды и митохондрии не воспроизводятся клеткой с нуля. Они образуются из ранее существующих таких же органелл путем их деления и последующего роста.
В настоящее время существуют амебы, у которых нет митохондрий, а вместо них есть бактерии симбионты. Также есть простейшие, сожительствующие с одноклеточными водорослями, выполняющими в клетке-хозяине роль хлоропластов.
Инвагинационная гипотеза происхождения эукариот
Кроме симбиогенеза существуют и другие взгляды на происхождение эукариот. Например, инвагинационная гипотеза. Согласно ей, предком эукариотической клетки был не анаэробный, а аэробный прокариот. К такой клетке могли прикрепляться другие прокариоты. Потом их геномы объединялись.
Ядро, митохондрии и пластиды возникли путем впячивания и отшнуровывания участков клеточной мембраны. В эти структуры попадала чужеродная ДНК.
Усложнение генома происходило в процессе дальнейшей эволюции.
Инвагинационная гипотеза происхождения эукариот хорошо объясняет наличие двойной мембраны у органелл. Однако она не объясняет, почему система биосинтеза белка в хлоропластах и митохондриях сходна с прокариотической, в то время как таковая в ядерно-цитоплазматическом комплексе имеет ключевые отличия.
Причины эволюции эукариот
Все разнообразие жизни на Земле (от простейших до покрытосеменных и млекопитающих) дали клетки эукариотического, а не прокариотического типа. Возникает вопрос, почему? Очевидно, ряд особенностей, возникших у эукариот, существенно повысили их эволюционные возможности.
Во-первых, у эукариот есть ядерный геном, который во много раз превосходит количество ДНК у прокариот. При этом эукариотические клетки диплоидны, кроме этого в каждом гаплоидном наборе определенные гены многократно повторяются. Все это обеспечивает, с одной стороны, большие масштабы для мутационной изменчивости, а с другой — уменьшает угрозу резкого снижения жизнеспособности в результате вредной мутации. Таким образом, эукариоты, в отличие от прокариот, обладают резервом наследственной изменчивости.
Эукариотические клетки имеют более сложный механизм регуляции жизнедеятельности, у них существенно больше различных регуляторных генов. Кроме того, молекулы ДНК образовали комплексы с белками, что позволило наследственному материалу упаковываться и распаковываться. Все вместе это дало возможность считывать информацию частями, в разных сочетаниях и количестве, в разное время. (Если в клетках прокариот транскрибируется почти вся информация генома, то в эукариотических клетках обычно менее половины.) Благодаря этому эукариоты могли специализироваться, лучше приспосабливаться.
У эукариот появились митоз, а затем и мейоз. Митоз позволяет воспроизводить генетически сходные клетки, а мейоз сильно увеличивает комбинативную изменчивость, что ускоряет эволюцию.
Большую роль в процветании эукариот сыграло приобретенное их предком аэробное дыхание (хотя оно есть и у многих прокариот).
На заре своей эволюции эукариоты обзавелись эластичной оболочкой, обеспечивавшей возможность фагоцитоза, и жгутиками, позволившими им двигаться. Это дало возможность эффективней питаться.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июля 2019;
проверки требуют 7 правок.
Схема эволюции эукариотических клеток.
1 — образование двойной мембраны ядра,
2 — приобретение митохондрий,
3 — приобретение пластид,
4 — внедрение получившейся фотосинтезирующей эукариотической клетки в нефотосинтезирующую (например, в ходе эволюции криптофитовых водорослей),
5 — внедрение получившейся клетки снова в нефотосинтезирующую (например, при симбиозе этих водорослей с инфузориями).
Цветом обозначен геном
предков эукариот, митохондрий и пластид.
Теория симбиогене́за (симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки — митохондрий, гидрогеносом и пластид.
История[править | править код]
Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер[1], показавший их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцына[2] и О. В. Баранецкого о двойственной природе лишайников — симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский[3] в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцын в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.
В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.
В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии — это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов (организмов, участвующих в симбиоте). Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.
Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ[4]. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.
Пластиды, подобно митохондриям, имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в своё время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.
Доказательства[править | править код]
Митохондрии и пластиды:
- имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя — бактерий.
- размножаются бинарным делением (причём делятся иногда независимо от деления клетки), никогда не образовываются путем синтеза из других органоидов, как, например, лизосома, образующаяся из комплекса Гольджи, а он, в свою очередь, из ЭПС.
- генетический материал — кольцевая ДНК, не связанная с гистонами (По доле ГЦ ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот)
- имеют свой аппарат синтеза белка — рибосомы и др.
- рибосомы прокариотического типа — c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.
- некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.
Проблемы[править | править код]
- ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.
- В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.
- Не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.
Примеры эндосимбиозов[править | править код]
В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты ещё не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они наглядно и убедительно показывают возможность симбиогенеза.
- Mixotricha paradoxa — наиболее интересный с этой точки зрения организм. Для движения она использует более 250 000 бактерий Treponema spirochetes, прикреплённых к поверхности её клетки. Митохондрии у этого организма вторично потеряны, но внутри его клетки есть сферические аэробные бактерии, заменяющие эти органеллы.
- Амёбы рода Pelomyxa также не содержат митохондрий и образуют симбиоз с бактериями.
- Инфузории рода Paramecium постоянно содержат внутри клеток водоросли, в частности, Paramecium bursaria образует эндосимбиоз с зелёными водорослями рода хлорелла (Chlorella).
- Одноклеточная жгутиковая водоросль Cyanophora paradoxa содержит цианеллы — органоиды, напоминающие типичные хлоропласты красных водорослей, но отличающиеся от них наличием тонкой клеточной стенки, содержащей пептидогликан (размер генома цианелл такой же, как у типичных хлоропластов, и во много раз меньше, чем у цианобактерий).
Гипотезы эндосимбиотического происхождения других органелл[править | править код]
Эндосимбиоз — наиболее широко признанная версия происхождения митохондрий и пластид. Но попытки объяснить подобным образом происхождение других органелл и структур клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.
Клеточное ядро, нуклеоцитоплазма[править | править код]
Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предположить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов[5].
В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis). В её основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра[6][7].
Жгутики и реснички[править | править код]
Линн Маргулис в книге Symbiosis in Cell Evolution (1981) предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующий аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путём деления, а путём достраивания нового органоида рядом со старым.
Пероксисомы[править | править код]
Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами[8].
Примечания[править | править код]
- ↑ Schimper A.E.W. Uber die Entwickelung der Chlorophyllkorner und Farbkorper // Bot. Ztschr. Bd. — 1883. — Т. Bot. Ztschr. Bd 41. S. 105—114.. Архивировано 8 февраля 2012 года.
- ↑ Фаминицын А.С. О роли симбиоза в эволюции организмов // Записки Имп. АН. — 1907. — Т. 20, № 3, вып. 8.
- ↑ Мережковский К.С. Терия двух плазм как основа симбиогенезиса, нового учения о происхождении организмов // Уч. зап. Казанского ун-та. — 1909. — Т. 76.
- ↑ Kurland C. G., Andersson S. G. E. Origin and Evolution of the Mitochondrial Proteome (неопр.) // Microbilology and Molecular Biology Reviews. — 2000. — Т. 64, № 4. — С. 786—820. — doi:10.1128/MMBR.64.4.786-820.2000. — PMID 11104819.
- ↑ А. В. Марков, А. М. Куликов. Происхождение эвкариот: выводы из анализа белковых гомологий в трёх надцарствах живой природы (недоступная ссылка). Дата обращения 17 сентября 2009. Архивировано 26 мая 2008 года.
- ↑ Takemura Masaharu. Poxviruses and the Origin of the Eukaryotic Nucleus (англ.) // Journal of Molecular Evolution. — 2001. — May (vol. 52, no. 5). — P. 419—425. — ISSN 0022-2844. — doi:10.1007/s002390010171. — PMID 11443345. [исправить]
- ↑ Villarreal L. P., DeFilippis V. R. A Hypothesis for DNA Viruses as the Origin of Eukaryotic Replication Proteins (англ.) // Journal of Virology. — 2000. — 1 August (vol. 74, no. 15). — P. 7079—7084. — ISSN 0022-538X. — doi:10.1128/jvi.74.15.7079-7084.2000. — PMID 10888648. [исправить]
- ↑ Gabaldón Toni, Snel Berend, Zimmeren Frank van, Hemrika Wieger, Tabak Henk, Huynen Martijn A. Origin and evolution of the peroxisomal proteome. (англ.) // Biology Direct. — 2006. — Vol. 1, no. 1. — P. 8. — ISSN 1745-6150. — doi:10.1186/1745-6150-1-8. — PMID 16556314. [исправить]
См. также[править | править код]
- Лишайники
- Протобионты
- Саламандра и водоросли
- Слизни и хлоропласты водорослей
- Тридакна
Литература[править | править код]
- Кулаев И. С. Происхождение эукариотических клеток // Соросовский Образовательный Журнал, 1998, № 5, с. 17-22.
- Подборка статей по проблеме происхождения эукариот