Ядерные реакции и их польза

Естествознание, 11 класс
Урок 21. Вред и польза от ядерных технологий
Перечень вопросов, рассматриваемых в теме:
- Почему опасна радиация?
- Какое применение находят радиоактивные изотопы?
- Почему ядерные реакции при той же массе исходных продуктов дают энергию гораздо больше, чем химические реакции?
Глоссарий по теме:
Радиоактивность – самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и электромагнитного излучения
Изотопы – элементы с одинаковым атомным номером, но с различным массовым числом
Меченые атомы – атомы, содержащие радиоактивные ядра
Цепная ядерная реакция – это ядерные реакции, в которых частицы, вызывающие их, образуются и как продукты этих реакций
Критическая масса – минимальная масса делящегося вещества, необходимая для начала самоподдерживающейся цепной реакции деления.
Ядерные реакции – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, который может сопровождаться изменением состава и строения ядра.
Реакция ядерного синтеза – реакция слияния лёгких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии.
Основная и дополнительная литература по теме урока:
- Естествознание. 11 класс: Учебник для общеобразоват. организаций: базовый уровень под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017 – §33, С. 106-109.
- Физика. 11 класс [Текст]: учебник для общеобразоват. учреждений: базовый уровень; профильный уровень/А.В. Грачев, В.А. Погожев, А.М. Салецкий и др.- Вентана-Граф, 2011
Теоретический материал для самостоятельного изучения
C открытием в 20 веке ядерных технологий ученый мир начал выявлять плюсы и минусы этого великого научного достижения.
Но перед тем, как переходить к разбору ядерных реакций, их плюсов и минусов вспомним основные понятия, которые пригодятся нам дальше.
Ядерная физика — раздел физики, изучающий структуру и свойства атомных ядер, а также их столкновения, т.е. ядерные реакции. Само явление радиоактивного распада заключается в испускании ядрами α-частиц, β-распад, γ-лучей и γ-квантов.
От γ-лучей защититься труднее всего, так как они имеют самую большую проникающую способность.
Атомное ядро– центральная часть атома. Заряжено положительно. Состоит из нуклонов (положительно заряженных протонов) и нейтронов. Вокруг ядра вращаются по орбиталям отрицательно заряженные электроны.
Вернемся к основной теме нашего урока, и первый минус обнаружил французский учёный-физик Пьер Кюри. Он заметил, что радиоактивное излучение оказывает влияние на организм и даже целенаправленно исследовал его на себе. Сейчас мы знаем, что радиация зачастую оказывает негативное влияние на человека, вызывая серьезные заболевания, но Кюри был первооткрывателем. Опасность заключается еще и в невозможности почувствовать радиацию. У нее нет запаха, вкуса, цвета, температуры, ничего. Этот фактор привел к гибели многих ученых, инженеров, конструкторов, работающих с радиоактивными веществами. Поражающее действие радиоактивного излучения связано с ионизирующим действием определенных частиц. Химические реакции, протекающие с участием ионизированных частиц, отличаются от стандартных. Само влияние составляется из времени облучения и интенсивности излучения, причем зависимость прямо пропорциональная. На планете Земля радиоактивные изотопы встречаются не так часто.
Ученые используют это, создавая меченые атомы.
Меченые атомы– атомы, содержащие ядра радиоактивных изотопов или отличающиеся атомной массой. Используются меченые атомы для исследования многих физических и химических процессов, таких как диффузия, процессы в живых организмах и так далее. Они ведут себя как обычные атомы, но могут быть легко обнаружены по испускаемому ими радиоактивному излучению.
Благодаря работе ученых, мы можем отметить первый плюс: Научные исследования с использованием меченого атома.
Другой важный пример, который также будет записан в плюсы ядерных технологий- это радиоактивный анализ, применяемый в археологии. В растениях всегда есть β-радиоактивный изотоп углерода с полураспадом в 5700 лет. Этот изотоп получают и растения, травоядные животные, поедающие растения и хищники, поедающие травоядных животных. После гибели организма поступление изотопа прекращается и его процентное соответствие с законом радиоактивного распада уменьшается в соответствии со следующим законом:
где N0 – начальное число атомов
N- число не распавшихся ядер через время t, t-время, T-период полураспада.
Благодаря методу радио-углеродного анализа можно узнавать возраст останков в пределах от 1000 до 100000 лет.
На практике так же применяются ядерные реакции, выделяющие тепло.
Энергия химических реакций сравнима с энергией кулоновского взаимодействия электрона с ядром, которая обратно пропорциональна RA, где RA- размер атома.
Энергия ядерных реакций- это энергия сильных взаимодействий в атомном ядре.
В ядре сильные взаимодействия компенсируют кулоновское взаимодействие протонов, т.е. обратно пропорциональна RN, где RN-размер атомного ядра.
Вспомним, что размер атома больше размера атомного ядра в 104-105 раз. И сделаем вывод, что Масса ядерного топлива существенно меньше массы химического топлива, нужного для выполнения той же работы, а также, ядерные реакции при одинаковой исходной массе топлива дают энергии больше в 104-105 раз.
Двигатели, работающие на ядерном топливе, устанавливаются на атомные ледоколы и подводные лодки для обеспечения длительного плаванья без дозаправки.
Конечно, внесем этот пункт в плюсы ядерных технологий.
Работа по воспроизведению и исследованию ядерных реакций зачастую осуществляется в ускорителях, где ядра атомов сталкиваются друг с другом на большой скорости.
Рассмотрим реакцию на примере ядра урана под воздействием нейтронов. При таком делении образуется два или три дополнительных нейтрона, которые могут использоваться для продолжения реакции. Дальше реакция может пойти по двум сценариям:
1. Взрывной характер, если будет потерян контроль над процессом.
2. Затухание. Оно произойдет, если нейтрон вылетит из объема вещества, не вступив в реакцию с ядрами.
Чтобы не допустить затухания реакции масса ядер, подвергающихся воздействию не должна быть меньше критической массы. Самоподдерживающаяся реакция деления тяжелых ядер, в которой непрерывно воспроизводятся нейтроны, делящие всё новые и новые ядра, называется цепной ядерной реакцией. Расчёт этой реакции впервые был проделан в 1939-1940гг. выдающимися советскими физиками Я.Б. Зельдовичем и Ю.Б. Харитоном. Осуществить самоподдерживающуюся реакцию ядерного синтеза еще сложнее. Ядра необходимо сблизить на расстояние 10-15м, если этого сделать не удается даже при большой скорости, то вещество нагревают до огромных температур (около 100 млн градусов Цельсия).
Кроме того, вещество должно быть достаточно плотным для сохранения энергии и передачи ее в следующую реакцию.
Из-за сложности проведения реакции первые опыты привели к неуправляемой реакции, т.е. были осуществлены виде взрыва. Практическое применение эта реакция нашла в военной промышленности. Была создана атомная и водородная бомба. Это страшное оружие было испытано на людях в 1945 году армией США. Японские города Хиросима и Нагасаки были подвергнуты атомной бомбардировке. Нельзя обойти вопрос морали после вышесказанного. Конечно, с точки зрения науки, создание ядерной реакции такой силы – это большое достижение, но применение этой силы в качестве оружия было совершенно недопустимо.
Американский писатель и режиссер в одной из своих работ написал фразу, ставшую крылатой: «С большой силой, приходит большая ответственность», – и эта фраза как нельзя лучше подходит для описания моральной стороны вопроса использования ядерных технологий и ядерного оружия.
В минусы ядерной энергии нужно внести неконтролируемый и разрушительный эффект при использовании ее во вред.
Вся представленная информация была посвящена определению плюсов и минусов ядерных технологий. И резюмируя всё вышесказанное можно представить две схемы: плюсы и минусы ядерных технологий.
Текст задания 1:
Что такое критическая масса?
Варианты ответа:
1) минимальная масса необходимая для начала самоподдерживающейся реакции распада.
2) максимально допустимая масса для вещества для осуществления контролируемой реакции деления.
3) масса при которой в заданный объем больше нельзя поместить ни единого атома вещества. Объем заполнен полностью.
4) масса вещества, при которой реакции начинает идти в обратную сторону.
Правильный вариант/варианты (или правильные комбинации вариантов):
1) минимальная масса необходимая для начала самоподдерживающейся реакции распада.
Текст задания 2:
Задания для автоматически заполняемого кроссворда:
1) Какой период полураспада в годах у β-радиоактивного изотопа углерода в растениях?
2) Какое массовое число у β-радиоактивного изотопа углерода в растениях?
3) Сколько нейтронов у β-радиоактивного изотопа углерода в растениях?
Правильные варианты:
1. 5700
2. 14
3. 8
Слова, которые автоматически вписываются в кроссворд:
- Ядро
- Атом
- Анализ
Расщепление ядра атома и способность использовать ядерную энергию, как в созидательных (атомная энергетика), так и разрушительных (атомная бомба) целях стало, пожалуй, одним из самых значимых изобретений прошлого ХХ века. Ну а в основе всей той грозной силы, что таиться в недрах крохотного атома лежат ядерные реакции.
Что такое ядерные реакции
Под ядерными реакциями в физике понимается процесс взаимодействия атомного ядра с другим подобным ему ядром либо разными элементарными частичками, в результате чего происходит изменения состава и структуры ядра.
Немного истории ядерных реакций
Первая ядерная реакция в истории была сделана великим ученым Резерфордом в далеком 1919 году во время опытов по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота альфа частицами, и при соударении частиц происходила ядерная реакция.
А так выглядело уравнение этой ядерной реакции. Именно Резерфорду принадлежит заслуга открытия ядерных реакций.
Затем последовали многочисленные опыты ученых по осуществлению различных типов ядерных реакций, например, весьма интересной и значимой для науки была ядерная реакция, вызванная бомбардировкой атомных ядер нейтронами, которую провел выдающийся итальянский физик Э. Ферми. В частности Ферми обнаружил, что ядерные преобразования могут быть вызваны не только быстрыми нейтронами, но и медленными, который двигаются с тепловыми скоростями. К слову ядерные реакции, вызванные воздействием температуры, получили название термоядерных. Что же касается ядерных реакций под действием нейтронов, то они очень быстро получили свое развитие в науке, да еще какое, об этом читайте дальше.
Типичная формула ядерной реакции.
Какие ядерные реакции есть в физике
В целом известные на сегодняшний день ядерные реакции можно разделить на:
- деление атомных ядер
- термоядерные реакции
Ниже детально напишем о каждой из них.
Деление атомных ядер
Реакция деления атомных ядер подразумевает распад собственно ядра атома на две части. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деления ядер атома урана, продолжая исследования своих ученых предшественников, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической таблицы Менделеева, а именно радиоактивные изотопы бария, криптона и некоторых других элементов. К сожалению, эти знания первоначально были использованы в ужасающих, разрушительных целях, ведь началась вторая мировая война и немецкие, а с другой стороны, американские и советские ученые наперегонки занимались разработкой ядерного оружия (в основе которого была ядерная реакция урана), закончившейся печально известными «ядерными грибами» над японскими городами Хиросимой и Нагасаки.
Но вернемся к физике, ядерная реакция урана при расщеплении его ядра обладает просто таки колоссальной энергией, которую наука смогла поставить себе на службу. Как же происходит подобная ядерная реакция? Как мы написали выше, она происходит вследствие бомбардировки ядра атома урана нейтронами, от чего ядро раскалывается, при этом возникает огромная кинетическая энергия, порядка 200 МэВ. Но что самое интересное, в качестве продукта ядерной реакции деления ядра урана от столкновения с нейтроном, возникает несколько свободных новых нейтронов, которые, в свою очередь, сталкиваются с новыми ядрами, раскалывают их, и так далее. В результате нейтронов становится еще больше и еще больше ядер урана раскалывается от столкновений с ними – возникает самая настоящая цепная ядерная реакция.
Вот так она выглядит на схеме.
При этом коэффициент размножения нейтронов должен быть больше единицы, это необходимое условие ядерной реакции подобного вида. Иными словами, в каждом последующем поколении нейтронов, образованных после распада ядер, их должно быть больше, нежели в предыдущем.
Стоит заметить, что по похожему принципу ядерные реакции при бомбардировке могут проходить и во время деления ядер атомов некоторых других элементов, с теми нюансами, что ядра могут бомбардироваться самыми разными элементарными частичками, да и продукты таких ядерных реакций будут разниться, чтобы описать их более детально, нужна целая научная монография
Термоядерные реакции
В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.
Термоядерные реакции, как это следует из самого из названия (термо – температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на Солнце происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.
Ядерные реакции, видео
И в завершение образовательное видео по теме нашей статьи, ядерным реакциям.
Автор: Павел Чайка, главный редактор журнала Познавайка
При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.
Ядерная реакция лития-6 с дейтерием 6Li(d,α)α
Я́дерная реа́кция — это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, который может сопровождаться изменением состава и строения ядра. Последствием взаимодействия может стать деление ядра, испускание элементарных частиц или фотонов. Кинетическая энергия вновь образованных частиц может быть гораздо выше первоначальной, при этом говорят о выделении энергии ядерной реакцией.
Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота. Она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.
По механизму взаимодействия ядерные реакции делятся на два вида:
- реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).
- прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.
Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил, сопровождается только перераспределением кинетической энергии и импульса частицы и ядра-мишени и называется потенциальным рассеянием[1][2].
Механизмы ядерной реакции[править | править код]
Составное ядро[править | править код]
Теория механизма реакции с образованием составного ядра была разработана Нильсом Бором в 1936 году[3] совместно с теорией капельной модели ядра и лежит в основе современных представлений о большой части ядерных реакций.
Согласно этой теории ядерная реакция идёт в два этапа. В начале исходные частицы образуют промежуточное (составное) ядро за ядерное время, то есть время, необходимое для того, чтобы частица пересекла ядро, примерно равное 10−23 — 10−21с. При этом составное ядро всегда образуется в возбуждённом состоянии, так как оно обладает избыточной энергией, привносимой частицей в ядро в виде энергии связи нуклона в составном ядре и части его кинетической энергии, которая равна сумме кинетической энергии ядра-мишени с массовым числом и частицы в системе центра инерции.
Энергия возбуждения[править | править код]
Энергия возбуждения составного ядра, образовавшегося при поглощении свободного нуклона, равна сумме энергии связи нуклона и части его кинетической энергии :
Чаще всего вследствие большой разницы в массах ядра и нуклона примерно равна кинетической энергии бомбардирующего ядро нуклона.
В среднем энергия связи равна 8 МэВ, меняясь в зависимости от особенностей образующегося составного ядра, однако для данных ядра-мишени и нуклона эта величина является константой. Кинетическая же энергия бомбардирующей частицы может быть какой угодно, например, при возбуждении ядерных реакций нейтронами, потенциал которых не имеет кулоновского барьера, значение может быть близким к нулю. Таким образом, энергия связи является минимальной энергией возбуждения составного ядра[1][2].
Каналы реакций[править | править код]
Переход в невозбуждённое состояние может осуществляться различными путями, называемыми каналами реакции. Типы и квантовое состояние налетающих частиц и ядер до начала реакции определяют входной канал реакции. После завершения реакции совокупность образовавшихся продуктов реакции и их квантовых состояний определяет выходной канал реакции. Реакция полностью характеризуется входным и выходным каналами.
Каналы реакции не зависят от способа образования составного ядра, что может быть объяснено большим временем жизни составного ядра, оно как бы «забывает», каким способом образовалось, следовательно, образование и распад составного ядра можно рассматривать как независимые события. К примеру, может образоваться как составное ядро в возбуждённом состоянии в одной из следующих реакций:
Впоследствии, при условии одинаковой энергии возбуждения, это составное ядро может распасться путём, обратным любой из этих реакций, с определённой вероятностью, не зависящей от истории возникновения этого ядра. Вероятность же образования составного ядра зависит от энергии и от сорта ядра-мишени[2].
Прямые ядерные реакции[править | править код]
Течение ядерных реакций возможно и через механизм прямого взаимодействия, в основном, такой механизм проявляется при очень больших энергиях бомбардирующих частиц, когда нуклоны ядра можно рассматривать как свободные. От механизма составного ядра прямые реакции отличаются, прежде всего, распределением векторов импульсов частиц-продуктов относительно импульса бомбардирующих частиц. В отличие от сферической симметрии механизма составного ядра для прямого взаимодействия характерно преимущественное направление полёта продуктов реакции вперёд относительно направления движения налетающих частиц. Распределения по энергиям частиц-продуктов в этих случаях также различны. Для прямого взаимодействия характерен избыток частиц с высокой энергией. При столкновениях с ядрами сложных частиц (то есть других ядер) возможны процессы передачи нуклонов от ядра к ядру или обмен нуклонами. Такие реакции происходят без образования составного ядра и им присущи все особенности прямого взаимодействия[1].
Сечение ядерной реакции[править | править код]
Вероятность реакции определяется так называемым ядерным сечением реакции. В лабораторной системе отсчёта (где ядро-мишень покоится) вероятность взаимодействия в единицу времени равна произведению сечения (выраженного в единицах площади) на поток падающих частиц (выраженный в количестве частиц, пересекающих за единицу времени единичную площадку). Если для одного входного канала могут осуществляться несколько выходных каналов, то отношения вероятностей выходных каналов реакции равно отношению их сечений. В ядерной физике сечения реакций обычно выражаются в специальных единицах — барнах, равных 10−24 см².
Выход реакции[править | править код]
Число случаев реакции, отнесённое к числу бомбардировавших мишень частиц , называется выходом ядерной реакции. Эта величина определяется на опыте при количественных измерениях. Поскольку выход непосредственно связан с сечением реакции, измерение выхода по сути является измерением сечения реакции[1][2].
Законы сохранения в ядерных реакциях[править | править код]
При ядерных реакциях выполняются все законы сохранения классической физики. Эти законы накладывают ограничения на возможность осуществления ядерной реакции. Даже энергетически выгодный процесс всегда оказывается невозможным, если сопровождается нарушением какого-либо закона сохранения. Кроме того, существуют законы сохранения, специфичные для микромира; некоторые из них выполняются всегда, насколько это известно (закон сохранения барионного числа, лептонного числа); другие законы сохранения (изоспина, чётности, странности) лишь подавляют определённые реакции, поскольку не выполняются для некоторых из фундаментальных взаимодействий. Следствиями законов сохранения являются так называемые правила отбора, указывающие на возможность или запрет тех или иных реакций.
Закон сохранения энергии[править | править код]
Если , , , — полные энергии двух частиц до реакции и после реакции, то на основании закона сохранения энергии:
При образовании более двух частиц соответственно число слагаемых в правой части этого выражения должно быть больше. Полная энергия частицы равна её энергии покоя Mc2 и кинетической энергии E, поэтому:
Разность суммарных кинетических энергий частиц на «выходе» и «входе» реакции Q = (E3 + E4) − (E1 + E2) называется энергией реакции (или энергетическим выходом реакции). Она удовлетворяет условию:
Множитель 1/c2 обычно опускают, при подсчёте энергетического баланса выражая массы частиц в энергетических единицах (или иногда энергии в массовых единицах).
Если Q > 0, то реакция сопровождается выделением свободной энергии и называется экзоэнергетической, если Q < 0, то реакция сопровождается поглощением свободной энергии и называется эндоэнергетической.
Легко заметить, что Q > 0 тогда, когда сумма масс частиц-продуктов меньше суммы масс исходных частиц, то есть выделение свободной энергии возможно только за счёт снижения масс реагирующих частиц. И наоборот, если сумма масс вторичных частиц превышает сумму масс исходных, то такая реакция возможна только при условии затраты какого-то количества кинетической энергии на увеличение энергии покоя, то есть масс новых частиц. Минимальное значение кинетической энергии налетающей частицы, при которой возможна эндоэнергетическая реакция, называется пороговой энергией реакции. Эндоэнергетические реакции называют также пороговыми реакциями, поскольку они не происходят при энергиях частиц ниже порога.
Закон сохранения импульса[править | править код]
Полный импульс частиц до реакции равен полному импульсу частиц-продуктов реакции. Если , , , — векторы импульсов двух частиц до реакции и после реакции, то
Каждый из векторов может быть независимо измерен на опыте, например, магнитным спектрометром. Экспериментальные данные свидетельствуют о том, что закон сохранения импульса справедлив как при ядерных реакциях, так и в процессах рассеяния микрочастиц.
Закон сохранения момента импульса[править | править код]
Момент количества движения также сохраняется при ядерных реакциях. В результате столкновения микрочастиц образуются только такие составные ядра, момент импульса которых равен одному из возможных значений момента, получающегося при сложении собственных механических моментов (спинов) частиц и момента их относительного движения (орбитального момента). Каналы распада составного ядра также могут быть лишь такими, чтобы сохранялся суммарный момент количества движения (сумма спинового и орбитального моментов).
Другие законы сохранения[править | править код]
- при ядерных реакциях сохраняется электрический заряд — алгебраическая сумма элементарных зарядов до реакции равна алгебраической сумме зарядов после реакции.
- при ядерных реакциях сохраняется число нуклонов, что в самых общих случаях интерпретируется как сохранение барионного числа. Если кинетические энергии сталкивающихся нуклонов очень высоки, то возможны реакции рождения нуклонных пар. Поскольку нуклонам и антинуклонам приписываются противоположные знаки, то при любых процессах алгебраическая сумма барионных чисел всегда остаётся неизменной.
- при ядерных реакциях сохраняется число лептонов (точнее, разность количества лептонов и количества антилептонов, см. Лептонное число).
- при ядерных реакциях, которые протекают под воздействием ядерных или электромагнитных сил, сохраняется чётность волновой функции, описывающей состояние частиц до и после реакции. Чётность волновой функции не сохраняется в превращениях, обусловленных слабыми взаимодействиями[1].
- при ядерных реакциях, обусловленных сильными взаимодействиями, сохраняется изотопический спин. Слабые и электромагнитные взаимодействия изоспин не сохраняют.
Виды ядерных реакций[править | править код]
Ядерные взаимодействия с частицами носят весьма разнообразный характер, их виды и вероятности той или иной реакции зависят от вида бомбардирующих частиц, ядер-мишеней, энергий взаимодействующих частиц и ядер и многих других факторов.
Ядерная реакция деления[править | править код]
Ядерная реакция деления — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном, альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзоэнергетический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.
Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.
Ядерная реакция синтеза[править | править код]
Ядерная реакция синтеза — процесс слияния двух атомных ядер с образованием нового, более тяжелого ядра.
Кроме нового ядра, в ходе реакции синтеза, как правило, образуются также различные элементарные частицы и (или) кванты электромагнитного излучения.
Без подвода внешней энергии слияние ядер невозможно, так как положительно заряженные ядра испытывают силы электростатического отталкивания — это так называемый «кулоновский барьер». Для синтеза ядер необходимо сблизить их на расстояние порядка 10−15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания. Это возможно в случае, если кинетическая энергия сближающихся ядер превышает кулоновский барьер.
Такие условия могут сложиться в двух случаях:
- Если атомные ядра (ионы, протоны или α-частицы), обладающие большой кинетической энергией, встречают на своем пути другие атомные ядра. В природе это возможно, например, при столкновении частиц ионизированного газа, например, в ионосфере Земли, с частицами космических лучей. Искусственно такие реакции реализуются в вакуумных камерах с использованием естественных источников высокоэнергетических α-частиц (впервые 1919, Э. Резерфорд), а также ускорителях заряженных частиц (впервые 1931, Р. Ван-де-Грааф)[4] и установках наподобие фузора или реактора «Поливелл», в которых кинетическая энергия заряженным частицам придается электрическим полем. Таким путём были получены первые искусственные ядерные реакции синтеза и многие искусственно синтезированные химические элементы.
- Если вещество нагревается до чрезвычайно высоких температур в звезде или термоядерном реакторе. Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза. В таком случае говорят о термоядерном синтезе или термоядерной реакции.
Термоядерная реакция[править | править код]
Термоядерная реакция — слияние двух атомных ядер с образованием нового, более тяжелого ядра, за счёт кинетической энергии их теплового движения.
Для ядерной реакции синтеза исходные ядра должны обладать относительно большой кинетической энергией, поскольку они испытывают электростатическое отталкивание, так как одноимённо положительно заряжены.
Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а, следовательно, нагревая вещество, можно достичь ядерной реакции синтеза.
Подобным образом протекают ядерные реакции естественного нуклеосинтеза в звёздах.
Реакции синтеза между ядрами лёгких элементов вплоть до железа проходят экзоэнергетически, с чем связывают возможность применения их в энергетике, в случае решения проблемы управления термоядерным синтезом.
Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространённого на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде:
+ энергия (17,6 МэВ).
Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица[5]. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для управляемого термоядерного синтеза[1].
Термоядерная реакция также используется в термоядерном оружии.
Фотоядерная реакция[править | править код]
При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром. Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном, нейтронов. Такой распад ведёт к ядерным реакциям и , которые и называются фотоядерными, а явление испускания нуклонов в этих реакциях — ядерным фотоэффектом.
Другие[править | править код]
Запись ядерных реакций[править | править код]
Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц.
Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических, то есть слева записывается сумма исходных частиц, справа — сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.
Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:
.
Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия, импульс, момент импульса, …). В некоторых реакциях, где участвует слабое взаимодействие, протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.
Второй способ записи, более удобный для ядерной физики, имеет вид A (a, bcd…) B, где А — ядро мишени, а — бомбардирующая частица (в том числе ядро), b, с, d, … — испускаемые частицы (в том числе ядра), В — остаточное ядро. В скобках записываются более лёгкие продукты реакции, вне — более тяжёлые. Так, вышеприведённая реакция захвата нейтрона может быть записана в таком виде:
.
Реакции часто называют по совокупности налетающих и испускаемых частиц, стоящих в скобках; так, выше записан типичный пример (n, γ)-реакции.
Первое принудительное ядерное превращение азота в кислород, которое провёл Резерфорд, обстреливая азот альфа-частицами, записывается в виде формулы
, где — ядро атома водорода, протон.
В «химической» записи эта реакция выглядит как
.
Примечания[править | править код]
Ссылки[править | править код]
- Ядерные реакции — статья из Большой советской энциклопедии.
- Ядерные реакции, Физическая энциклопедия.