Физические явления для пользы человека

Физические явления для пользы человека thumbnail

Динамические изменения встроены в саму природу. Все меняется так или иначе каждый момент. Если вы внимательно осмотритесь, вы найдете сотни примеров физических и химических явлений, которые являются вполне себе естественными преобразованиями.

Изменения – единственная константа во Вселенной

Как ни странно, изменение является единственной константой в нашей Вселенной. Чтобы понять физические и химические явления (примеры в природе встречаются на каждом шагу), принято классифицировать их по типам, в зависимости от характера конечного результата, вызванного ими. Различают физические, химические и смешанные изменения, которые содержат в себе и первые, и вторые.

Примеры химических явлений и физических

Физические и химические явления: примеры и значение

Что такое физическое явление? Любые изменения, происходящие в веществе без изменения его химического состава, являются физическими. Они характеризуется изменениями физических атрибутов и материального состояния (твердое, жидкое или газообразное), плотности, температуры, объема, которые происходят без изменения его фундаментальной химической структуры. Не происходит создание новых химических продуктов или изменения общей массы. Кроме того, этот тип изменений обычно является временным и в некоторых случаях полностью обратимым.

Когда вы смешиваете химикаты в лаборатории, можно легко увидеть реакцию, но в мире вокруг вас происходит множество химических реакций каждый день. Химическая реакция изменяет молекулы, в то время как физическое изменение только перестраивает их. Например, если мы возьмем газ хлора и металлический натрий и объединим их, мы получим столовую соль. Полученное вещество сильно отличается от любого из его составных частей. Это химическая реакция. Если затем растворить эту соль в воде, мы просто смешиваем молекулы соли с молекулами воды. В этих частицах нет изменений, это физическое преобразование.

Примеры физических изменений

Все состоит из атомов. При соединении атомов образуются разные молекулы. Различные свойства, которые наследуют объекты, являются следствием различных молекулярных или атомных структур. Основные свойства объекта зависят от их молекулярного расположения. Физические изменения происходят без изменения молекулярной или атомной структуры объектов. Они просто преобразуют состояние объекта, не изменяя его природы. Плавление, конденсация, изменение объема и испарения являются примерами физических явлений.

Дополнительные примеры физических изменений: металл, расширяющийся при нагревании, передача звука через воздух, замерзание воды зимой в лед, медь втягивается в провода, формирование глины на разных объектах, мороженое плавится до жидкости, нагревание металла и преобразование его в другую форму, сублимация йода при нагревании, падение любого объекта под действием силы тяжести, чернила поглощаются мелом, намагничивание железных гвоздей, снеговик, тающий на солнце, светящиеся лампы накаливания, магнитная левитация объекта.

Физические и химические явления в природе примеры

Как различать физические и химические изменения?

Множество примеров химических явлений и физических можно встретить в жизни. Часто трудно определить разницу между ними, особенно когда оба могут происходить одновременно. Чтобы определить физические изменения, задайте следующие вопросы:

  • Является ли состояние состояния объекта изменением (газообразным, твердым и жидким)?
  • Является ли изменение чисто ограниченным физическим параметром или характеристикой, такой как плотность, форма, температура или объем?
  • Является ли химическая природа объекта изменением?
  • Возникают ли химические реакции, приводящие к созданию новых продуктов?

Если ответ на один из первых двух вопросов да, и ответы на последующие вопросы отсутствуют, это, скорее всего, это физическое явление. И наоборот, если ответ на любой из двух последних вопросов положительный, в то время как первые два отрицательные, это, безусловно, химическое явление. Трюк состоит в том, чтобы просто четко наблюдать и анализировать то, что вы видите.

Химические явления

Примеры химических реакций в повседневной жизни

Химия происходит в окружающем вас мире, а не только в лаборатории. Материя взаимодействует для образования новых продуктов посредством процесса, называемого химической реакцией или химическим изменением. Каждый раз, когда вы готовите или убираете, это химия в действии. Ваше тело живет и растет благодаря химическим реакциям. Есть реакции, когда вы принимаете лекарства, зажигаете спичку и вздыхаете. Вот 10 химических реакций в повседневной жизни. Это всего лишь небольшая выборка из тех примеров физических и химических явлений в жизни, которые вы видите и испытываете много раз каждый день:

  1. Фотосинтез. Хлорофилл в листьях растений превращает углекислый газ и воду в глюкозу и кислород. Это одна из самых распространенных ежедневных химических реакций, а также одна из самых важных, поскольку именно так растения производят пищу для себя и животных и превращают углекислый газ в кислород.
  2. Аэробное клеточное дыхание является реакцией с кислородом в человеческих клетках. Аэробное клеточное дыхание является противоположным процессом фотосинтеза. Разница заключается в том, что молекулы энергии объединяются с кислородом, которым мы дышим, чтобы высвободить энергию, необходимую нашим клеткам, а также углекислый газ и воду. Энергия, используемая клетками, представляет собой химическую энергию в виде АТФ.
  3. Анаэробное дыхание. Анаэробное дыхание производит вино и другие ферментированные продукты. Ваши мышечные клетки выполняют анаэробное дыхание, когда вы исчерпываете подаваемый кислород, например, при интенсивном или продолжительном упражнении. Анаэробное дыхание дрожжами и бактериями используется для ферментации для производства этанола, углекислого газа и других химических веществ, которые производят сыр, вино, пиво, йогурт, хлеб и многие другие распространенные продукты.
  4. Сгорание – это тип химической реакции. Это химическая реакция в повседневной жизни. Каждый раз, когда вы зажигаете спичку или свечу, разжигаете костер, вы видите реакцию горения. Сжигание объединяет энергетические молекулы с кислородом для получения двуокиси углерода и воды.
  5. Ржавчина – общая химическая реакция. Со временем железо развивает красное, шелушащееся покрытие, называемое ржавчиной. Это пример реакции окисления. Другие повседневные примеры включают формирование вердигров на меди и потускнение серебра.
  6. Смешивание химических веществ вызывает химические реакции. Пекарский порошок и пищевая сода выполняют аналогичные функции при выпечке, но они по-разному реагируют на другие ингредиенты, поэтому вы не всегда можете заменить их на другой. Если вы комбинируете уксус и пищевую соду для химического “вулкана” или молока с порошком для выпечки в рецепте, вы испытываете реакцию двойного смещения или метатезиса (плюс некоторые другие). Ингредиенты рекомбинируют для получения газообразного диоксида углерода и воды. Углекислый газ образует пузырьки и помогает “выращиванию” хлебобулочных изделий. Эти реакции кажутся простыми на практике, но часто состоят из нескольких этапов.
  7. Батареи являются примерами электрохимии. Батареи используют электрохимические или окислительно-восстановительные реакции для превращения химической энергии в электрическую.
  8. Пищеварение. Тысячи химических реакций происходят во время пищеварения. Как только вы положите пищу в рот, фермент в вашей слюне, называемый амилазой, начинает разрушать сахара и другие углеводы в более простые формы, которые ваше тело может поглощать. Соляная кислота в вашем желудке реагирует с пищей, чтобы ее разрушить, а ферменты расщепляют белки и жиры, чтобы они могли всасываться в кровь через стенки кишечника.
  9. Кислотно-базовые реакции. Всякий раз, когда вы смешиваете кислоту (например, уксус, лимонный сок, серную кислоту , соляную кислоту ) со щелочью (например, пищевой содой, мылом, аммиаком, ацетоном), вы выполняете кислотно-щелочную реакцию. Эти процессы нейтрализуют друг друга, получая соль и воду. Хлорид натрия не является единственной солью, которая может быть образована. Например, здесь приведено химическое уравнение для реакции кислотно-щелочной реакции, в которой образуется хлорид калия, обычный заменитель столовой соли: HCl + KOH → KCl + H2O.
  10. Мыло и моющие средства. Их очищают путем химических реакций. Мыло эмульгирует грязь, что означает, что масляные пятна связываются с мылом, чтобы их можно было снять водой. Моющие средства снижают поверхностное натяжение воды, поэтому они могут взаимодействовать с маслами, изолировать их и смывать.
  11. Химические реакции при приготовлении пищи. Кулинария – один большой практический эксперимент по химии. Приготовление использует тепло, чтобы вызвать химические изменения в пище. Например, когда вы сильно кипятите яйцо, сероводород, полученный нагреванием яичного белка, может реагировать с железом из яичного желтка, образуя серо-зеленое кольцо вокруг желтка. Когда вы готовите мясо или выпечку, реакция Майяра между аминокислотами и сахарами дает коричневый цвет и желательный вкус.
Читайте также:  Ответы врачей о пользе спермы

Физические и химические явления примеры и значение

Другие примеры химических и физических явлений

Физические свойства описывают характеристики, которые не изменяют вещество. Например, вы можете изменить цвет бумаги, но это еще бумага. Вы можете кипятить воду, но когда вы собираете и конденсируете пар, это все еще вода. Вы можете определить массу листа бумаги, и это все еще бумага.

Химическими свойствами являются те, которые показывают, как вещество реагирует или не реагирует с другими веществами. Когда металлический натрий помещают в воду, он реагирует бурно, образуя гидроксид натрия и водород. Достаточное тепло выделяется тем, что водород вырывается в пламя, реагируя с кислородом в воздухе. С другой стороны, когда вы кладете кусок медного металла в воду, реакция не возникает. Таким образом, химическое свойство натрия заключается в том, что он реагирует с водой, а химическое свойство меди заключается в том, что это не так.

Какие еще можно привести примеры химических явлений и физических? Химические реакции всегда происходят между электронами в валентных оболочках атомов элементов в периодической таблице. Физические явления на низких энергетических уровнях просто включают механические взаимодействия – случайные столкновения атомов без химических реакций, таких как атомы или молекулы газа. Когда энергии столкновений очень велики, целостность ядра атомов нарушается, что приводит к делению или слиянию вовлеченных видов. Спонтанный радиоактивный распад обычно считается физическим явлением.

Источник

Marika))

Ученик

(121),
закрыт

4 года назад

Антон Лобанов

Профи

(616)

7 лет назад

Физический- придание телу ускорения, путем прописывания здоровенного леща.
Химический- горение костра, с последующим изменением химического состава мяса, повисшего над ним.

Liudmila Sharukhia

Высший разум

(181812)

7 лет назад

1.Изменения веществ, которые не ведут к образованию новых веществ (с иными свойствами) , называют физическими явлениями.
1. Вода при нагревании может переходить в пар, а при охлаждении – в лед.
2. Длина медных проводов изменяется летом и зимой: увеличивается при нагревании и уменьшается при охлаждении.
3. Объем воздуха в шаре увеличивается в теплом помещении.
Изменения с веществами произошли, но при этом вода осталась водой, медь – медью, воздух – воздухом.
Новых веществ, несмотря на их изменения, не образовалось.
2.Химическое явление (реакция) – явление, при котором образуются новые вещества.
А по каким признакам можно определить, что произошла химическая реакция? При некоторых химических реакциях происходит выпадение осадка. Другие признаки – изменение цвета исходного вещества, изменение его вкуса, выделение газа, выделение или поглощение тепла и света.
Опыт 1
Подержим над огнем кусочек белого хлеба, содержащего органические вещества.

Читайте также:  Йоговское дыхание вред и польза

Наблюдаем:
1. обугливание, то есть изменение цвета;
2. появление запаха.

Вывод. Произошло химическое явление (образовалось новое вещество – уголь)

Никита Павловский

Ученик

(216)

2 года назад

Существует два типа явлений природы:
1) явления, при которых молекулы веществ не изменяются – физические явления;
2) явления, при которых молекулы веществ изменяются – химические явления.
Что же происходит с веществами при этих явлениях?

В первом случае молекулы сталкиваются и разлетаются, не изменившись; во втором – молекулы, столкнувшись, реагируют друг с другом, при этом одни молекулы (старые) разрушаются, а другие (новые) образуются.

Физические явления – явления, при которых одни химические вещества не превращаются в другие. (Существует группа физических явлений, в которых изменяются сами атомы (точнее атомные ядра) . Естественно, что при этом изменяются и вещества, образуемые этими атомами. Так происходит, например, при ядерном взрыве)
При плавлении, кипении, сублимации, перетекании жидкости, изгибе твердого тела и других подобных явлениях молекулы веществ не изменяются.

Химические явления (химические реакции) – явления, при которых одни химические вещества превращаются в другие

Признаки физических явлений:
Тепловые – изменяется температура тел, изменяется агрегатное состояние вещества, тепло переходит от одного тела к другому.
Механические – тела движутся и взаимодействуют, при этом изменяется их скорость, могут измениться форма и размеры тела.
Звуковые – мы воспринимаем их органом слуха, но практически все знают, что существует ультразвук, с помощью него общаются, напрмер, дельфины.
Световые – мы воспринимаем их органом зрения.
Магнитные и электрические – мы не можем воспринимать их органами чувств, но обнаруживаем по воздействию на другие тела и используем в повседневной жизни.
Ядерные – радиация, процессы при работе атомного реактора или взрыве атомной бомбы. Действие всемирного тяготения – камни падают на Землю.

Источник

В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий.

Сегодня вы увидите 5 удивительных физических явлений и эффектов.

Эффект Мейснера

Хаотичное движение атомов проводника препятствует прохождению электрического тока. Сопротивление проводника уменьшается с уменьшением температуры. При дальнейшем снижении температуры проводника наблюдается полное уменьшение сопротивление и явление сверхпроводимости.

При некоторой температуре (близкой 0K) сопротивление проводника резко падает до нуля. Это явление называется сверхпроводимостью. Однако, в сверхпроводниках наблюдается также другое явление — эффект Мейснера. Проводники в сверхпроводящем состоянии обнаруживают необычное свойство. Из объема сверхпроводника полностью вытесняется магнитное поле.

Вытеснение сверхпроводником магнитного поля

Проводник в сверхпроводящем состоянии, в отличие от идеального проводника, ведет себя как диамагнетик. Внешнее магнитное поле вытесняется из объема сверхпроводника. Тогда если поместить магнит над сверхпроводником, магнит зависает в воздухе.

Возникновение этого эффекта связано с тем, что при внесении сверхпроводника в магнитное поле в нем возникают вихревые токи индукции, магнитное поле которых полностью компенсирует внешнее поле (как в любом диамагнетике). Но индуцированное магнитное поле само также создает вихревые токи, направление которых противоположно токам индукции по направлению и равно по величине. В результате в объеме сверхпроводника отсутствуют и магнитное поле и ток. Объем сверхпроводника экранируется тонким приповерхностным слоем — скин-слоем — на толщину которого (порядка 10-7-10-8 м) проникает магнитное поле и в котором происходит его компенсация.

Короче говоря, визуализация эффекта Мейснера заключается в левитации магнита над сильно охлажденным сверхпроводником.

Китайский волчок

Китайский волчок, он же волчок Томсона представляет собой шарик со срезанным шаровым сегментом высотой около или чуть больше половины радиуса сферы. К плоскости среза присоединена цилиндрическая ручка, которая выступает за сферическую поверхность шарика. При сообщении китайскому волчку вращательного импульса (кинетического момента) вокруг оси, проходящей через центр шарика и совпадающей с осью цилиндрической ручки, направленной вначале вертикально вверх, он, достаточно быстро приподнимаясь, переворачивается на 180°, приподнимается на торец ручки и в этом положении, опираясь на свою шейку, направленную теперь вертикально вниз, продолжает устойчивое вращение. Это вращение на торце ручки длится до момента, пока сила трения не «победит» кинетический момент, и кинетическая энергия не перейдет в тепловую энергию. В этом состоит суть явления.

Эффект Магнуса

Все видели как в футболе или теннисе мяч летит по невероятной траектории. Почему так происходит? Сейчас и узнаем.

Этот эффект открыл немецкий физик Генрих Магнус в 1853 году. Суть явления в том, что мяч при вращении создает вокруг себя вихревое движение воздуха. С одной стороны объекта направление вихря совпадает с направлением обтекающего потока и скорость движения среды с этой стороны увеличивается. С другой стороны объекта направление вихря противоположно направлению движения потока, и скорость движения среды уменьшается. Эта разность скоростей порождает поперечную силу, которая меняет траекторию полета. Явление часто применяется в спорте, например, специальные удары: топ-спин, сухой лист в футболе или система Hop-Up в страйкболе

Эффект Бифельда-Брауна

Эффект Бифельда-Брауна – это электрическое явление, при котором возникает ионный ветер, способный поддерживать левитацию отдельных предметов. Он был открыт в 1921 году физиком Томасом Брауном, который работал в лаборатории профессора Бифельда, поэтому явление и получило название в честь обоих ученых.

Читайте также:  Польза белого чая для лица

Эффект относится к электрическим явлениям, и не имеет никакого отношения к реактивным. В нем обеспечивается движение активного типа. Со стороны эффект выглядит завораживающе. При подаче напряжения между двумя электродами создается невидимая сила, способная поднимать в воздух и постоянно удерживать неподвижно в одном месте различные предметы, которые принято называть лифтер или ионолет.

В сильных электрических полях с постоянным током происходит ионизация ионов, которые присутствуют в воздухе. Для этого используются два электрода, один из которых обязательно должен быть заостренным или тонким. Именно возле него происходит максимальная ионизация воздуха, что создает мощный поток. При соблюдении главного условия, а именно подачи 1 кВт на 1мм зазора между электродами, силы ионного ветра достаточно, чтобы приподнимать вверх и поддерживать левитацию легких токопроводящих предметов.

Официально утверждается, что данное явление возможно только в условиях атмосферы. При запуске оборудования в вакууме с соблюдением условия 1 кВт на 1мм зазора между электродами, эффект не наблюдается. Это является главным доказательством того, что левитация поддерживается благодаря присутствующим в воздухе иона.

Эффект Джанибекова

Эффект Джанибекова – интересное открытие нашего времени. Дважды герой Советского Союза, генерал-майор авиации Владимир Александрович Джанибеков заслуженно считается самым опытным космонавтом СССР. Он совершил наибольшее количество полетов – пять, причем все в качестве командира корабля. Владимиру Александровичу принадлежит открытие одного любопытного эффекта, названного его именем – т.н. эффекта Джанибекова, который был обнаружен им в 1985 году, во время своего пятого полета на корабле «Союз Т-13» и орбитальной станции «Салют-7».

Эффект Джанибекова состоит в странном поведении летящего вращающегося тела в невесомости.  После его открытия, как обычно, появились десятки различных объяснений эффекта Джанибекова.

А обнаружился эффект, когда космонавты распаковывали доставленный на орбиту груз, то им приходилось откручивать так называемые «барашки» – гайки с ушками. Стоит ударить по ушку «барашка», и он сам раскручивается. Затем, раскрутившись до конца и соскочив с резьбового стержня, гайка продолжает, вращаясь, лететь по инерции в невесомости (примерно как летящий вращающийся пропеллер). Так вот, Владимир Александрович заметил, что пролетев примерно 40 сантиметров ушками вперед, гайка вдруг совершает внезапный переворот на 180 градусов и продолжает лететь в том же направлении, но уже ушками назад и вращаясь в другую сторону. Затем, опять пролетев сантиметров 40, гайка снова делает кувырок на 180 градусов и продолжает лететь снова ушками вперед, как в первый раз и так далее. Джанибеков неоднократно повторял эксперимент, и результат неизменно повторялся. В общем, вращающаяся гайка, летящая в невесомости, совершает резкие 180-градусные периодические перевороты каждые 43 сантиметра. Также он пробовал вместо гайки использовать другие предметы, например, пластилиновый шарик с прилепленной к нему обычной гайкой, который точно так же, пролетев некоторое расстояние, совершал такие же внезапные перевороты.

Эффект, действительно, любопытен. После его открытия, как обычно, появились десятки различных объяснений эффекта Джанибекова. Не обошлось и без устрашающих апокалиптических прогнозов. Многие стали говорить о том, что наша планета – это по сути такой же вращающийся пластилиновый шарик или «барашек», летящий в невесомости. И что Земля периодически совершает подобные кульбиты. Кто-то даже назвал период времени: переворот земной оси происходит раз в 12 тысяч лет. И что, мол, последний раз планета совершила кувырок в эпоху мамонтов и скоро намечается очередной такой переворот – может завтра, а может через несколько лет – в результате которого на Земле произойдет смена полюсов и начнутся катаклизмы.

Правильное объяснение эффекта Джанибекова состоит в следующем. Дело в том, что скорость вращения «барашка» сравнительно невелика, поэтому он находится в неустойчивом состоянии (в отличие от гироскопа, который вращается быстрее и поэтому имеет стабильную ориентацию в пространстве и кувырки ему не грозят). Гайка, помимо основной оси вращения, также вращается и вокруг двух других пространственных осей со скоростями на порядок ниже (второстепенные движения). В результате влияния этих второстепенных движений, со временем постепенно происходит изменение наклона основной оси вращения (усиливается прецессия), и когда он (т.е. угол наклона) достигает критического значения, система делает кувырок (подобно маятнику, изменившему направление колебания).

Грозят ли Земле подобные апокалиптические кульбиты? Скорее всего, нет. Во-первых, центр тяжести «барашка», как и пластилинового шарика с гайкой, значительно смещен по оси вращения, чего нельзя сказать о нашей планете, которая хоть и не является идеальным шаром, но более-менее уравновешена. И, во-вторых, значение величин моментов инерции Земли и величины прецессии Земли (колебания оси вращения) позволяют ей быть устойчивой как гироскоп, а не кувыркающейся как гайка Джанибекова.

Удивительно, не правда ли?

Если хотите больше статей на тему необъяснимой физики, подписывайтесь на канал и ставьте лайки.

Источник